84,679 research outputs found
Influence of the catalyst support on the steam reforming performance of toluene as tar model compound
The large amount of tar produced along with the syngas during biomass gasification is one of the major obstacle for the diffusion of gasifiers at industrial scale. Catalytic cracking and reforming are the most suitable processes for the transformation of tar into lighter gases. The selection of suitable catalysts is a critical step. The catalysts must own high activity and high resistance to deactivation for coke deposition. In this work the effect of two different supports, mayenite and aluminium oxide, on the activity of the nickel was investigated in the steam reforming of toluene that was used as tar model compound. In particular, the performed experimentations aimed to test the mayenite in terms of improvement of resistance to carbon deposition in conditions similar to those of gasification reactors. The obtained results indicate that Ni /mayenite catalyst needs higher temperature to activate and leads to lower value of toluene conversion with respect to Ni / alumina. However, mayenite, which is known from literature to have higher resistance to coke deposition due to the presence of free oxygens in the lattice which oxidize the coke deposited on the catalyst surface showed higher resistance to deactivation especially for low steam to carbon ratios
The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas
The effect of heavy tar compounds on the performance of a Ni-YSZ anode
supported solid oxide fuel cell was investigated. Both toluene and naphthalene
were chosen as model compounds and tested separately with a simulated
bio-syngas. Notably, the effect of naphthalene is almost negligible with pure
H2 feed to the SOFC, whereas a severe degradation is observed when using a
bio-syngas with an H2:CO = 1. The tar compound showed to have a remarkable
effect on the inhibition of the WGS shift-reaction, possibly also on the CO
direct electro-oxidation at the three-phase-boundary. An interaction through
adsorption of naphthalene on nickel catalytic and electrocatalytic active sites
is a plausible explanation for observed degradation and strong performance
loss. Different sites seem to be involved for H2 and CO electro-oxidation and
also with regard to catalytic water gas shift reaction. Finally, heavy tars
(C>=10) must be regarded as a poison more than a fuel for SOFC applications,
contrarily to lighter compounds such benzene or toluene that can directly
reformed within the anode electrode. The presence of naphthalene strongly
increases the risk of anode re-oxidation in a syngas stream as CO conversion to
H2 is inhibited and also CH4 conversion is blocked
Steam reforming of phenol as biomass tar model compound over Ni/Al₂O₃ catalyst
Catalytic steam reforming of phenol over Ni/Al₂O₃ catalyst with 10 wt% of Ni loading was carried out in a fixed bed reactor. The effect of temperature (650–800 °C), reaction time (20–80 min) and catalyst amount (0–2 g corresponding to 0–4.5 gcat h gphenol−1) on carbon conversion, H2 potential and catalyst deactivation was studied. High efficiency of Ni/Al₂O₃ catalyst in steam reforming of phenol is observed at 750 °C for a reaction time of 60 min when 1.5 g of catalyst (3.4 gcat h gphenol−1) is used, with carbon conversion and H2 potential being 81 and 59%, respectively. An increase in temperature enhances phenol reforming reaction as well as coke gasification, minimizing its deposition over the catalyst. However, at high temperatures (800 °C) an increase in Ni crystal size is observed indicating catalyst irreversible deactivation by sintering. As catalyst time on stream is increased the coke amount deposited over the catalyst increases, but no differences in Ni crystal size are observed. An increase in catalyst amount from 0 to 1.5 g increases H2 potential, but no further improvement is observed above 1.5 g. It is not observed significant catalyst deactivation by coke deposition, with the coke amount deposited over the catalyst being lower than 5% in all the runs
Sulfur analysis of Bolu-Mengen lignite before and after microbiological treatment using reductive pyrolysis and gas chromatography/mass spectrometry
Atmospheric pressure-temperature programmed reduction coupled with on-line mass spectrometry (AP-TPR/MS) is used for the first time on microbiologically treated coal samples as a technique to monitor the degree of desulfurization of the various sulfur functionalities. The experimental procedure enables the identification of both organic and inorganic sulfur species present in the coal matrix. A better insight in the degradation of the coal matrix and the accompanying processes during the AP-TPR experiment is obtained by a quantitative differentiation of the sulfur. The determination of the sulfur balance for the reductive pyrolysis gives an overview of the side reactions and their relative contribution in the total process. The volatile sulfur species are unambiguously identified using AP-TPR off-line coupled with gas chromatography/mass spectrometry (GC/MS). In this way, fundamental mechanisms and reactions that occur during the reductive pyrolysis could be quantified, explaining the differences in AP-TPR recoveries. Therefore, this study gives a clearer view on the possibilities and limitations of AP-TPR as a technique to monitor sulfur functionalities in coal
Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal
One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach
it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming
reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of
biodesulphurization on the treated solid products.
Subbituminous high sulphur coal from ‘‘Pirin” basin (Bulgaria) was selected as a high sulphur containing sample. Different types of
microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with
three types of fungi: ‘‘Trametes Versicolor” – ATCC No. 200801, ‘‘Phanerochaeta Chrysosporium” – ME446, Pleurotus Sajor-Caju and
one Mixed Culture of bacteria – ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria
and consecutive reduction by 13% for organic sulphur (Sorg) decrease with ‘‘Phanerochaeta Chrysosporium” and ‘‘Trametes Versicolor”
were achieved.
To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled ‘‘on-line” with mass spectrometry (AP-TPR/MS),
on-line with potentiometry (AP-TPR/pot) and by the ‘‘off-line” AP-TPR/GC/MS analysis was used. The need of applying different
atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance,
oxygen bomb combustion followed by ion chromatography was used
Kinetic Modelling for Tar Evolution and Formation in a Downdraft Gasifier
Biomass gasification modeling is a powerful tool
used to optimize the design of a gasifier. A detailed kinetic model
was built by the current authors [1] to predict the behavior of
air blown downdraft gasifier for a wide range of materials
within the range of (38≤C≤52) %, (5.2≤H≤7) %, and
(21.7≤O≤45) %. The model was verified and showed a good
stability for a wide range of working parameters like
equivalence ratio and moisture content. In the current research,
4 main tar species are added to the model to represent tar
formation using detailed kinetic reactions. The yield of tar
species is discussed for different zones of a gasifier based on
temperature of each zone. Mass and energy balance are
calculated. 18 different kinetic reactions are implemented in the
kinetic code to predict the optimum working conditions that
leads to the production of higher value producer gas. Results
conclude that using ER of 0.3 with moisture content levels lower
than 10% will lead to the production of higher yields of syngas
with lower amounts of tar
Suppression of complete fusion due to breakup in the reactions B + Bi
Above-barrier cross sections of -active heavy reaction products, as
well as fission, were measured for the reactions of B with
Bi. Detailed analysis showed that the heavy products include components
from incomplete fusion as well as complete fusion (CF), but fission originates
almost exclusively from CF. Compared with fusion calculations without breakup,
the CF cross sections are suppressed by 15% for B and 7% for B. A
consistent and systematic variation of the suppression of CF for reactions of
the weakly bound nuclei Li, Be, B on targets of
Pb and Bi is found as a function of the breakup threshold
energy
Target identification strategies in plant chemical biology
The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starting blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, whereas studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology
Compilation of Giant Electric Dipole Resonances Built on Excited States
Giant Electric Dipole Resonance (GDR) parameters for gamma decay to excited
states with finite spin and temperature are compiled. Over 100 original works
have been reviewed and from some 70 of which more than 300 parameter sets of
hot GDR parameters for different isotopes, excitation energies, and spin
regions have been extracted. All parameter sets have been brought onto a common
footing by calculating the equivalent Lorentzian parameters. The current
compilation is complementary to an earlier compilation by Samuel S. Dietrich
and Barry L. Berman (At. Data Nucl. Data Tables 38(1988)199-338) on
ground-state photo-neutron and photo-absorption cross sections and their
Lorentzian parameters. A comparison of the two may help shed light on the
evolution of GDR parameters with temperature and spin. The present compilation
is current as of January 2006.Comment: 31 pages including 1 tabl
- …
