5,808 research outputs found

    Observer–Based Control for a New Stochastic Maximum Power Point tracking for Photovoltaic Systems With Networked Control System

    Get PDF
    This study discusses the new stochastic maximum power point tracking (MPPT) control approach towards the photovoltaic cells (PCs). PC generator is isolated from the grid, resulting in a direct current (DC) microgrid that can provide changing loads. In the course of the nonlinear systems through the time-varying delays, we proposed a Networked Control Systems (NCSs) beneath an event-triggered approach basically in the fuzzy system. In this scenario, we look at how random, variable loads impact the PC generator’s stability and efficiency. The basic premise of this article is to load changes and the value matching to a Markov chain. PC generators are complicated nonlinear systems that pose a modeling problem. Transforming this nonlinear PC generator model into the Takagi–Sugeno (T–S) fuzzy model is another option. Takagi–Sugeno (T–S) fuzzy model is presented in a unified framework, for which 1) the fuzzy observer–based on this premise variables can be used for approximately in the infinite states to the present system, 2) the fuzzy observer–based controller can be created using this same premises be the observer, and 3) to reduce the impact of transmission burden, an event-triggered method can be investigated. Simulating in the PC generator model for the realtime climate data obtained in China demonstrates the importance of our method. In addition, by using a new Lyapunov–Krasovskii functional (LKF) for combining to the allowed weighting matrices incorporating mode-dependent integral terms, the developed model can be stochastically stable and achieves the required performances. Based on the T-P transformation, a new depiction of the nonlinear system is derived in two separate steps in which an adequate controller input is guaranteed in the first step and an adequate vertex polytope is ensured in the second step. To present the potential of our proposed method, we simulate it for PC generators

    Cakar ayam shaping machine

    Get PDF
    Cakar ayam (Figure 7.1) is one of the Malay traditional cookies that are made from sliced sweet potatoes deep-fried in the coconut candy. In current practice of moulding the cookies, the fried sweet potatoes are molded using traditional manual tools, which are inefficient and less productive for the mass production purposes. “Kuih cakar ayam” associated with the meaning of the idiom means less messy handwriting has a somewhat negative connotation .This cookies may just seem less attractive in shape but still likeable . In fact, this cookie is considered a popular snack even outside the holiday season. The choice of the name of this cookie is more to shape actually resembles former chicken scratches made by the paw the ground while foraging. The value of wisdom, beauty and creativity of the Malays is clearly evident through the Malay cookie. Although it is attacked by the invention of modern cakes that look far more interesting, these cakes will be able to survive a long time until now

    Evolution engine technology in exhaust gas recirculation for heavy-duty diesel engine

    Get PDF
    In this present year, engineers have been researching and inventing to get the optimum of less emission in every vehicle for a better environmental friendly. Diesel engines are known reusing of the exhaust gas in order to reduce the exhaust emissions such as NOx that contribute high factors in the pollution. In this paper, we have conducted a study that EGR instalment in the vehicle can be good as it helps to prevent highly amount of toxic gas formation, which NOx level can be lowered. But applying the EGR it can lead to more cooling and more space which will affect in terms of the costing. Throughout the research, fuelling in the engine affects the EGR producing less emission. Other than that, it contributes to the less of performance efficiency when vehicle load is less

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Power control of a grid-connected PV system during asymmetrical voltage faults

    Full text link
    [EN] Under voltage faults, grid-tied photovoltaic inverters should remain connected to the grid according to fault ride-through requirements. Moreover, it is a desirable characteristic to keep the power injected to grid constant during the fault. This paper explores a control strategy to regulate the active and reactive powers delivered by a single-stage photovoltaic generation system to the grid during asymmetrical voltage faults. The reference for the active power is obtained from a maximum power point tracking algorithm, whereas the reference for the reactive power can be set freely if the zero-sequence voltage is null; otherwise, it will depend on the magnitude of the zero-sequence voltage and the active power reference. The power control loop generates the reference currents to be imposed by the grid-tied power inverter. These currents are regulated by a predictive controller. The proposed approach is simpler than other methods proposed in the literature. The performance of the control strategy presented is verified with an experimental laboratory setup where voltage sags and swells are considered.This work was funded by Conicyt Chile Under Project FONDECYT 11180092. The financial support given by CONICYT/FONDAP/15110019 is also acknowledged.Hunter, G.; Riedemann, J.; Andrade, I.; Blasco-Gimenez, R.; Peña, R. (2019). Power control of a grid-connected PV system during asymmetrical voltage faults. Electrical Engineering. 101(1):239-250. https://doi.org/10.1007/s00202-019-00769-x2392501011Greentech Media Research “By 2023, the world will have 1 trillion Watts of installed solar PV capacity”. https://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaciSubudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98Hong Chih-Ming, Ting-Chia Ou, Kai-Hung Lu (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50:270–279Ou TC, Hong CM (2014) Dynamic operation and control of microgrid hybrid power systems. Energy 66:314–323Prakash SL, Arutchelvi M, Sharon SS (2015) Simulation and performance analysis of MPPT for single stage PV grid connected system. In: 2015 IEEE 9th international conference on Intelligent systems and control (ISCO), Coimbatore, pp 1–6Moghadasi A, Sargolzaei A, Moghaddami M, Sarwat AI, Yen K (2017) Active and reactive power control method for three-phase PV module-integrated converter based on a single-stage inverter. In: 2017 IEEE applied power electronics conference and exposition (APEC), Tampa, FL, pp 1357–1362L Hi, Xu Y, Adhikari S, Rizy DT, Li F, Irminger P (2012) Real and reactive power control of a three-phase single-stage PV system and PV voltage stability. 2012 IEEE power and energy society general meeting, San Diego, CA, pp 1–8Shao R, Wei R, Chang L (2014) A multi-stage MPPT algorithm for PV systems based on golden section search method. 2014 IEEE applied power electronics conference and exposition—APEC 2014, Fort Worth, TX, pp 676–683Zapata JW, Kouro S, Aguirre M, Meynard T (2015) Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. Industrial Electronics Society, IECON 2015 - 41st annual conference of the IEEE, Yokohama, pp 004311–004316Dousoky GM, Ahmed EM, Shoyama M (2013) “MPPT schemes for single-stage three-phase grid-connected photovoltaic voltage-source inverters. In: 2013 IEEE international conference industrial technology (ICIT), pp 600–605Electricity System Operator (ESO). www.nationalgrideso.comAl-Shetwi A, Sujod M, Blaabjerg F, Yang Y (2019) Fault ride-through control of grid-connected photovoltaic power plants: a review. Sol Energy 180:340–350Almeida P, Monteiro K, Barbosa P, Duarte J, Ribeiro P (2016) Improvement of PV grid-tied inverters operation under asymmetrical fault conditions. Sol Energy 133:363–371Ding G, Gao F, Tian H, Ma C, Chen M, He G, Liang Y (2016) Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Trans Power Electron 31:4182–4194Miret J, Castilla M, Camacho A, Vicuña LGd, Matas J (2012) Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. In: IEEE transactions on power electronics, vol 27, pp 4262–4271Naderi S, Negnevitsky M, Jalilian A, Hagh M (2016) Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter. Renew Energy 92:484–498Merabet A, Labib L, Ghias AMYM (2018) Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans Smart Grid 9:5699–5709Ting-Chia Ou (2012) A novel unsymmetrical faults analysis for microgrid distribution systems. Electr Power Energy Syst 43:1017–1024Lin W, Ou T (2011) Unbalanced distribution network fault analysis with hybrid compensation. IET Gener Transm Distrib 5:92–100Ting-Chia Ou (2013) Ground fault current analysis with a direct building algorithm for microgrid distribution. Electr Power Energy Syst 53:867–875Ou T-C, Lu K-H, Huang C-J (2017) Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller). Energies 10:488Sadeghkhani I, Hamedani M, Guerrero J, Mehrizi-Sani Ali (2017) A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids. IEEE Trans Smart Grid 8:2138–2148Junyent-Ferre A, Gomis-Bellmunt O, Green T, Soto-Sanchez D (2011) Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Trans Power Electron 26(12):3744–3753Castilla M, Miret J, Sosa JL, Matas J, de Vicuña LG (2010) Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans Power Electron 25(12):2930–2940Camacho A, Castilla M, Miret J, Vasquez JC, AlarcĂłn-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Trans Ind Electron 60(4):1429–1441Sosa JL, Castilla M, Miret J, Matas J, Al-Turki YA (2016) Control strategy to maximize the power capability of PV three-phase inverters during voltage sags. IEEE Trans Power Electron 31(4):3314–3323Lin F-J et al (2015) Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control. IEEE Trans Ind Electron 62(9):5516–5528Hunter G, Andrade I, Riedemann J, Blasco-Gimenez R, Peña R (2016) Active and reactive power control during unbalanced grid voltage in PV systems. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp 3012–3017Rodrıguez J, Pontt J, Silva CA, Correa P, Lezana P, Cortes P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE TransInd Electron 54(1):495–503Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921Lei M et al (2018) An MPC-based ESS control method for PV power smoothing applications. IEEE Trans Power Electron 33(3):2136–2144Hussain I, Singh B (2014) Grid integration of large capacity solar PV plant using multipulse VSC with robust PLL based control. In: Power India International Conference (PIICON), 2014 6th IEEE, Delhi, pp 1–6Bayrak G, Kabalci E, Cebecı M (2014) Real time power flow monitoring in a PLL inverter based PV distributed generation system. In: Power Electronics and Motion Control Conference and Exposition (PEMC), 2014 16th International, Antalya, pp 1035–1040Yagnik UP, Solanki MD (2017) Comparison of L, LC & LCL filter for grid connected converter. In: 2017 International conference on trends in electronics and informatics (ICEI), Tirunelveli, pp 455–458Gupta AK, Saxena R (2016) Review on widely-used MPPT techniques for PV applications. In: 2016 International conference on innovation and challenges in cyber security (ICICCS-INBUSH), Noida, pp 270–273Schmidt H, Burger B, Bussemas U, Elies S (2009) How fast does an MPP tracker really need to be?. In: Proc. of 24th EuPVSEC, pp 3273–3276Abu-Rub H, Malinowski M, Al-Haddad K (2014) Power electronics for renewable energy systems, transportation and industrial applications. Wiley, HobokenRodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, vol 37. Wiley, HobokenPeng FZ, Lai J-S (1996) Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans Instrum Meas 45(1):293–297Mitsugi Y, Yokoyama A (2014) Phase angle and voltage stability assessment in multi-machine power system with massive integration of PV considering PV’s FRT requirements and dynamic load characteristics. In: 2014 international conference on power system technology, Chengdu, pp 1112–1119IEEE-SA Standards Board (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (IEEE Std 1547

    A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    Full text link
    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovoltaic cell that produces more energy. After sunset, the tracker goes back to the initial position (which of sunrise). Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    A Sliding Mode Control for a Sensorless Tracker: Application on a Photovoltaic System

    Full text link
    The photovoltaic sun tracker allows us to increase the energy production. The sun tracker considered in this study has two degrees of freedom (2-DOF) and especially specified by the lack of sensors. In this way, the tracker will have as a set point the sun position at every second during the day for a period of five years. After sunset, the tracker goes back to the initial position (which of sunrise). The sliding mode control (SMC) will be applied to ensure at best the tracking mechanism and, in another hand, the sliding mode observer will replace the velocity sensor which suffers from a lot of measurement disturbances. Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe
    • 

    corecore