4 research outputs found

    Design And Implementation Of Speed Regulator For A PMSM Using Genetic Algorithm

    Get PDF
    Abstract--Power electronics plays an important role in controlling the drives. Digital control technology has been rapidly developed for power electronics and electrical drives, and it has been the impetus to the widespread use of a permanent magnet synchronous motor in many industrial applications such as chip mount machines, semiconductor production machines, high-resolution computerized numerically controlled machine tools, robotics, and hard disk drives. A PMSM has low noise, low inertia, high torque-tocurrent ratio, high efficiency, robustness, and low maintenance cost. We propose a genetic algorithm (GA) based speed regulator system for a permanentmagnet synchronous motor. By using the GA the motor acceleration observer as well as a speed regulator is designed. In terms of linear matrix inequalities, sufficient conditions for the existence of the regulator and observer are derived. Simulation and experimental results are given to verify that the proposed digital control method can be successfully used for a PMSM under model parameter and load torque variations

    Finite-Time Chaos Control of a Complex Permanent Magnet Synchronous Motor System

    Get PDF
    This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables. Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity and feasibility of the theoretical analysis

    θ-D Approximation Technique for Nonlinear Optimal Speed Control Design of Surface-Mounted PMSM Drives

    Get PDF
    This paper proposes nonlinear optimal controller and observer schemes based on a θ-D approximation approach for surface-mounted permanent magnet synchronous motors (PMSMs). By applying the θ-D method in both the controller and observer designs, the unsolvable Hamilton–Jacobi–Bellman equations are switched to an algebraic Riccati equation and statedependent Lyapunov equations (SDLEs). Then, through selecting the suitable coefficient matrices, the SDLEs become algebraic, so the complex matrix operation technique, i.e., the Kronecker product applied in the previous papers to solve the SDLEs is eliminated. Moreover, the proposed technique not only solves the problem of controlling the large initial states, but also avoids the excessive online computations. By utilizing a more accurate approximation method, the proposed control system achieves superior control performance (e.g., faster transient response, more robustness under the parameter uncertainties and load torque variations) compared to the state-dependent Riccati equation-based control method and conventional PI controlmethod. The proposed observer-based control methodology is tested with an experimental setup of a PMSM servo drive using a Texas Instruments TMS320F28335 DSP. Finally, the experimental results are shown for proving the effectiveness of the proposed control approac

    An adaptive type-2 fuzzy sliding mode tracking controller for a robotic manipulator

    Get PDF
    With the wide application of intelligent manufacturing and the development of diversified functions of industrial manipulator, the requirements for the control accuracy and stability of the manipulator servo system are also increasing. The control of industrial manipulator is a time-varying system with nonlinear and strong coupling, which is often affected by uncertain factors, including parameter changing, environmental interference, joint friction and so on. Aiming at the problem of the poor control accuracy of the manipulator. Under the complex disturbance environment, control accuracy of the manipulator will be greatly affected, so this paper proposes an adaptive type-2 fuzzy sliding mode control (AT2FSMC) method applied to the servo control of the industrial manipulator, which realizes the adaptive adjustment of the boundary layer thickness to suppress the trajectory error caused by the external disturbance and weakens the chattering problem of the sliding mode control. The simulation results on a two-axis manipulator indicate that, with the presence of external disturbances, the proposed control method can help the manipulator maintain control signal stability and improve tracking accuracy. It also suppressed chattering produced by sliding mode control (SMC) and strengthening the robustness of the system. Compared with other conventional trajectory tracking control methods, the effectiveness of the proposed method can be reflected. Finally, the proposed method is tested in an actual manipulator to complete a practical trajectory to prove its feasibility
    corecore