163 research outputs found

    Binary Radiance Fields

    Full text link
    In this paper, we propose binary radiance fields (BiRF), a storage-efficient radiance field representation employing binary feature encoding that encodes local features using binary encoding parameters in a format of either +1+1 or −1-1. This binarization strategy lets us represent the feature grid with highly compact feature encoding and a dramatic reduction in storage size. Furthermore, our 2D-3D hybrid feature grid design enhances the compactness of feature encoding as the 3D grid includes main components while 2D grids capture details. In our experiments, binary radiance field representation successfully outperforms the reconstruction performance of state-of-the-art (SOTA) efficient radiance field models with lower storage allocation. In particular, our model achieves impressive results in static scene reconstruction, with a PSNR of 31.53 dB for Synthetic-NeRF scenes, 34.26 dB for Synthetic-NSVF scenes, 28.02 dB for Tanks and Temples scenes while only utilizing 0.7 MB, 0.8 MB, and 0.8 MB of storage space, respectively. We hope the proposed binary radiance field representation will make radiance fields more accessible without a storage bottleneck.Comment: 21 pages, 12 Figures, and 11 Table

    Style-transfer GANs for bridging the domain gap in synthetic pose estimator training

    Full text link
    Given the dependency of current CNN architectures on a large training set, the possibility of using synthetic data is alluring as it allows generating a virtually infinite amount of labeled training data. However, producing such data is a non-trivial task as current CNN architectures are sensitive to the domain gap between real and synthetic data. We propose to adopt general-purpose GAN models for pixel-level image translation, allowing to formulate the domain gap itself as a learning problem. The obtained models are then used either during training or inference to bridge the domain gap. Here, we focus on training the single-stage YOLO6D object pose estimator on synthetic CAD geometry only, where not even approximate surface information is available. When employing paired GAN models, we use an edge-based intermediate domain and introduce different mappings to represent the unknown surface properties. Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization, while requiring only very little additional effort
    • …
    corecore