84,042 research outputs found

    Focused Local Search for Random 3-Satisfiability

    Full text link
    A local search algorithm solving an NP-complete optimisation problem can be viewed as a stochastic process moving in an 'energy landscape' towards eventually finding an optimal solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on the presently unsatisfiedclauses is known to be very effective: the time to solution has been observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio α\alpha sufficiently far below the critical satisfiability threshold αc4.27\alpha_c \approx 4.27. We present numerical results on the behaviour of three focused local search algorithms for this problem, considering in particular the characteristics of a focused variant of the simple Metropolis dynamics. We estimate the optimal value for the ``temperature'' parameter η\eta for this algorithm, such that its linear-time regime extends as close to αc\alpha_c as possible. Similar parameter optimisation is performed also for the well-known WalkSAT algorithm and for the less studied, but very well performing Focused Record-to-Record Travel method. We observe that with an appropriate choice of parameters, the linear time regime for each of these algorithms seems to extend well into ratios α>4.2\alpha > 4.2 -- much further than has so far been generally assumed. We discuss the statistics of solution times for the algorithms, relate their performance to the process of ``whitening'', and present some conjectures on the shape of their computational phase diagrams.Comment: 20 pages, lots of figure

    Clustering of solutions in hard satisfiability problems

    Full text link
    We study the structure of the solution space and behavior of local search methods on random 3-SAT problems close to the SAT/UNSAT transition. Using the overlap measure of similarity between different solutions found on the same problem instance we show that the solution space is shrinking as a function of alpha. We consider chains of satisfiability problems, where clauses are added sequentially. In each such chain, the overlap distribution is first smooth, and then develops a tiered structure, indicating that the solutions are found in well separated clusters. On chains of not too large instances, all solutions are eventually observed to be in only one small cluster before vanishing. This condensation transition point is estimated to be alpha_c = 4.26. The transition approximately obeys finite-size scaling with an apparent critical exponent of about 1.7. We compare the solutions found by a local heuristic, ASAT, and the Survey Propagation algorithm up to alpha_c.Comment: 8 pages, 9 figure

    Entropy landscape and non-Gibbs solutions in constraint satisfaction problems

    Full text link
    We study the entropy landscape of solutions for the bicoloring problem in random graphs, a representative difficult constraint satisfaction problem. Our goal is to classify which type of clusters of solutions are addressed by different algorithms. In the first part of the study we use the cavity method to obtain the number of clusters with a given internal entropy and determine the phase diagram of the problem, e.g. dynamical, rigidity and SAT-UNSAT transitions. In the second part of the paper we analyze different algorithms and locate their behavior in the entropy landscape of the problem. For instance we show that a smoothed version of a decimation strategy based on Belief Propagation is able to find solutions belonging to sub-dominant clusters even beyond the so called rigidity transition where the thermodynamically relevant clusters become frozen. These non-equilibrium solutions belong to the most probable unfrozen clusters.Comment: 38 pages, 10 figure
    corecore