6,798 research outputs found

    Three-transmit-antenna space-time codes based on SU(3)

    Get PDF
    Fully diverse constellations, i.e., a set of unitary matrices whose pairwise differences are nonsingular, are useful in multiantenna communications especially in multiantenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here, we give systematic design methods of space-time codes which are appropriate for three-transmit-antenna differential modulation. The structures of the codes are motivated by the special unitary Lie group SU(3). One of the codes, which is called the AB code, has a fast maximum-likelihood (ML) decoding algorithm using complex sphere decoding. Diversity products of the codes can be easily calculated, and simulated performance shows that they are better than group-based codes, especially at high rates and as good as the elaborately designed nongroup code

    Space-time code design for three-transmit-antenna systems

    Get PDF
    Fully diverse constellations, i.e., a set of unitary matrices whose pairwise differences are nonsingular, are useful in multi-antenna communications especially in multi-antenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideals, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here we give a systematic method to design space-time codes which are appropriate for three-transmit-antenna differential modulation. The structure of the code is motivated by the Lie group SU(3). The code has a fast decoding algorithm using sphere decode. The diversity product of the code can be easily calculated and simulated performance shows that the code is better than the group-based codes especially at high rates and is as good as the elaborately-designed nongroup code

    High-rate space-time codes motivated by SU(3)

    Get PDF
    Fully-diverse constellations, i.e., a set of unitary matrices whose pairwise differences are nonsingular, are useful in multi-antenna communications especially in multi-antenna differential modulation, since they have good pairwise error properties. Recently,group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully-diverse constellations of unitary matrices. Here we give systematic methods to design space-time codes which are appropriate for three-transmit- antenna differential modulation. The structures of the codes are motivated by the Lie group SU(3). One of the codes, called the AB code, has a fast decoding algorithm using the complex sphere decoder. The diversity products of the codes can be easily calculated and simulated performances show that the codes are better than the group-based codes [1] especially at high rates and as good as the elaborately-designed non-group codes[1]

    Energy-Efficient Full Diversity Collaborative Unitary Space-Time Block Code Design via Unique Factorization of Signals

    Full text link
    In this paper, a novel concept called a \textit{uniquely factorable constellation pair} (UFCP) is proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes for a wireless communication system having two transmitter antennas and a single receiver antenna. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood (ML) receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this paper to maximizing the coding gain is to carefully design an energy scale to compress the first three largest energy points in the corner of the QAM constellations in the denominator of the objective as well as carefully design a constellation triple forming two UFCPs, with one collaborating with the other two so as to make the accumulated minimum Euclidean distance along the two transmitter antennas in the numerator of the objective as large as possible and at the same time, to avoid as many corner points of the QAM constellations with the largest energy as possible to achieve the minimum of the numerator. In other words, the optimal coding gain is attained by intelligent constellations collaboration and efficient energy compression

    A Numerical Approach for Designing Unitary Space Time Codes with Large Diversity

    Full text link
    A numerical approach to design unitary constellation for any dimension and any transmission rate under non-coherent Rayleigh flat fading channel.Comment: 32 pages, 6 figure

    Unitary space-time modulation via Cayley transform

    Get PDF
    A prevoiusly proposed method for communicating with multiple antennas over block fading channels is unitary space-time modulation (USTM). In this method, the signals transmitted from the antennas, viewed as a matrix with spatial and temporal dimensions, form a unitary matrix, i.e., one with orthonormal columns. Since channel knowledge is not required at the receiver, USTM schemes are suitable for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Previous results have shown that if suitably designed, USTM schemes can achieve full channel capacity at high SNR and, moreover, that all this can be done over a single coherence interval, provided the coherence interval and number of transmit antennas are sufficiently large, which is a phenomenon referred to as autocoding. While all this is well recognized, what is not clear is how to generate good performing constellations of (nonsquare) unitary matrices that lend themselves to efficient encoding/decoding. The schemes proposed so far either exhibit poor performance, especially at high rates, or have no efficient decoding algorithms. We propose to use the Cayley transform to design USTM constellations. This work can be viewed as a generalization, to the nonsquare case, of the Cayley codes that have been proposed for differential USTM. The codes are designed based on an information-theoretic criterion and lend themselves to polynomial-time (often cubic) near-maximum-likelihood decoding using a sphere decoding algorithm. Simulations suggest that the resulting codes allow for effective high-rate data transmission in multiantenna communication systems without knowing the channel. However, our preliminary results do not show a substantial advantage over training-based schemes

    Representation theory for high-rate multiple-antenna code design

    Get PDF
    Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a fading environment, but the practical success of using multiple antennas depends crucially on our ability to design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero determinant, is a desirable property for good performance. We use the powerful theory of fixed-point-free groups and their representations to design high-rate constellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a group, for all rates and numbers of transmitter antennas. The group structure makes the constellations especially suitable for differential modulation and low-complexity decoding algorithms. The classification also reveals that the number of different group structures with full diversity is very limited when the number of transmitter antennas is large and odd. We, therefore, also consider extensions of the constellation designs to nongroups. We conclude by showing that many of our designed constellations perform excellently on both simulated and real wireless channels
    corecore