381,588 research outputs found

    Designing Bandwidth-Efficient Stabilizing Control Servers

    Get PDF
    Guaranteeing stability of control applications in embedded systems, or cyber-physical systems, is perhaps the alpha and omega of implementing such applications. However, as opposed to the classical real-time systems where often the acceptance criterion is meeting the deadline, control applications do not primarily enforce hard deadlines. In the case of control applications, stability is considered to be the main design criterion and can be expressed in terms of the amount of delay and jitter a control application can tolerate before instability. Therefore, new design and analysis techniques are required for embedded control systems. In this paper, the analysis and design of such systems considering server-based resource reservation mechanism are addressed. The benefits of employing servers are manifold: (1) providing a compositional framework, (2) protection against other tasks misbehaviors, and (3) systematic bandwidth assignment. We propose a methodology for designing bandwidth-efficient servers to stabilize control tasks

    Dovetail: Stronger Anonymity in Next-Generation Internet Routing

    Full text link
    Current low-latency anonymity systems use complex overlay networks to conceal a user's IP address, introducing significant latency and network efficiency penalties compared to normal Internet usage. Rather than obfuscating network identity through higher level protocols, we propose a more direct solution: a routing protocol that allows communication without exposing network identity, providing a strong foundation for Internet privacy, while allowing identity to be defined in those higher level protocols where it adds value. Given current research initiatives advocating "clean slate" Internet designs, an opportunity exists to design an internetwork layer routing protocol that decouples identity from network location and thereby simplifies the anonymity problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not protect the user against a local eavesdropper or an untrusted ISP, which will not be acceptable for many users. Thus, we propose Dovetail, a next-generation Internet routing protocol that provides anonymity against an active attacker located at any single point within the network, including the user's ISP. A major design challenge is to provide this protection without including an application-layer proxy in data transmission. We address this challenge in path construction by using a matchmaker node (an end host) to overlap two path segments at a dovetail node (a router). The dovetail then trims away part of the path so that data transmission bypasses the matchmaker. Additional design features include the choice of many different paths through the network and the joining of path segments without requiring a trusted third party. We develop a systematic mechanism to measure the topological anonymity of our designs, and we demonstrate the privacy and efficiency of our proposal by simulation, using a model of the complete Internet at the AS-level

    Protein–phenolic interactions and inhibition of glycation – combining a systematic review and experimental models for enhanced physiological relevance

    Get PDF
    Background: While antiglycative capacity has been attributed to (poly)phenols, the exact mechanism of action remains unclear. Studies so far are often relying on supra-physiological concentrations and use of non-bioavailable compounds.<p></p> Methods: To inform the design of a physiologically relevant in-vitro study, we carried out a systematic literature review of dietary interventions reporting plasma concentrations polyphenol metabolites. Bovine Serum Albumin (BSA) was pre-treated prior to in vitro glycation: either no treatment (native), pre-oxidised (incubated with 10nM H2O2, for 8 hours) or incubated with a mixture of phenolic acids at physiologically relevant concentrations, for 8 hours). In-vitro glycation was carried out in presence of i) glucose only (0, 5 or 10mM), ii) glucose (0, 5 or 10mM) plus H2O2 (10nM), or iii) glucose (0, 5 or 10mM) plus phenolic acids (10-160nM). Fructosamine was measured using the nitroblue tetrazolium method.<p></p> Results: Following (high) dietary polyphenol intake, 3-hydroxyphenylacetic acid is the most abundant phenolic acid in peripheral blood (up to 338μM) with concentrations for other phenolic acids ranging from 13nM-200μM. Presence of six phenolic acids with BSA during in-vitro glycation did not lower fructosamine formation. However, when BSA was pre-incubated with phenolic acids, significantly lower concentration of fructosamine was detected under glycoxidative conditions (glucose 5 or 10mM plus H2O2 10nM) (p<0.001 vs. native BSA).<p></p> Conclusion: Protein pre-treatment, either with oxidants or phenolic acids, is an important regulator of subsequent glycation in a physiologically relevant system. High quality in-vitro studies under conditions closer to physiology are feasible and should be employed more frequently.<p></p&gt
    • …
    corecore