335,985 research outputs found

    Communication and control in small batch part manufacturing

    Get PDF
    This paper reports on the development of a real-time control network as an integrated part of a shop floor control system for small batch part manufacturing. The shop floor control system is called the production control system (PCS). The PCS aims at an improved control of small batch part manufacturing systems, enabling both a more flexible use of resources and a decrease in the economical batch size. For this, the PCS integrates various control functions such as scheduling, dispatching, workstation control and monitoring, whilst being connected on-line to the production equipment on the shop floor. The PCS can be applied irrespective of the level of automation on the shop floor. The control network is an essential part of the PCS, as it provides a real-time connection between the different modules (computers) of the PCS, which are geographically distributed over the shop floor. An overview of the requirements of such a control network is given. The description of the design includes the services developed, the protocols used and the physical layout of the network. A prototype of the PCS, including the control network, has been installed and tested in a pilot plant. The control network has proven that it can supply a manufacturing environment, consisting of equipment from different vendors with different levels of automation, with a reliable, low cost, real-time communication facility

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems
    corecore