427,866 research outputs found

    Ranking and Selecting Multi-Hop Knowledge Paths to Better Predict Human Needs

    Full text link
    To make machines better understand sentiments, research needs to move from polarity identification to understanding the reasons that underlie the expression of sentiment. Categorizing the goals or needs of humans is one way to explain the expression of sentiment in text. Humans are good at understanding situations described in natural language and can easily connect them to the character's psychological needs using commonsense knowledge. We present a novel method to extract, rank, filter and select multi-hop relation paths from a commonsense knowledge resource to interpret the expression of sentiment in terms of their underlying human needs. We efficiently integrate the acquired knowledge paths in a neural model that interfaces context representations with knowledge using a gated attention mechanism. We assess the model's performance on a recently published dataset for categorizing human needs. Selectively integrating knowledge paths boosts performance and establishes a new state-of-the-art. Our model offers interpretability through the learned attention map over commonsense knowledge paths. Human evaluation highlights the relevance of the encoded knowledge

    Solving General Arithmetic Word Problems

    Full text link
    This paper presents a novel approach to automatically solving arithmetic word problems. This is the first algorithmic approach that can handle arithmetic problems with multiple steps and operations, without depending on additional annotations or predefined templates. We develop a theory for expression trees that can be used to represent and evaluate the target arithmetic expressions; we use it to uniquely decompose the target arithmetic problem to multiple classification problems; we then compose an expression tree, combining these with world knowledge through a constrained inference framework. Our classifiers gain from the use of {\em quantity schemas} that supports better extraction of features. Experimental results show that our method outperforms existing systems, achieving state of the art performance on benchmark datasets of arithmetic word problems.Comment: EMNLP 201
    corecore