40,809 research outputs found
Assessing the 2004-2018 fentanyl misusing issues reported to an international range of adverse reporting systems
© 2019 Schifano, Chiappini, Corkery and Guirguis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Submitted 2 October 2018, Accepted 14 January 2019, published 1 February 2019.Objective: A recent, global, increase in the use of opioids including the prescribing, highly potent, fentanyl has been recorded. Due its current popularity and the potential lethal consequences of its intake, we aimed here at analyzing the fentanyl misuse, abuse, dependence and withdrawal-related adverse drug reactions (ADRs) identified within the European Medicines Agency (EMA), the United Kingdom Yellow Card Scheme (YCS), and the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) databases. Methods: Descriptive analysis of both ADRs and related cases. Results: The analysis of fentanyl-related misuse, abuse, dependence and withdrawal cases reported during years 2004-2018 to the EMA, the YCS, and the FAERS showed increasing levels overtime, specifically, EMA-related data presented two peaks (e.g., in 2008 and 2015), whilst the FAERS dataset was characterized by a dramatic increase of the ADRs collected over the last 18 months, and particularly from 2016. Some 127,313 ADRs (referring to n = 6,161 patients/single cases) related to fentanyl's misuse/abuse/dependence/withdrawal issues were reported to EMA, with 14,287 being judged by the reporter as "suspect." The most represented ADRs were: "drug dependence "(76.87%), "intentional product misuse" (13.06%), and "drug abuse" (7.45%). Most cases involved adult males and the concomitant use of other prescribing/illicit drugs. A range of idiosyncratic (i.e., ingestion/injection of transdermal patches' fentanyl) and very high-dosage intake cases were here identified. Significant numbers of cases required either a prolonged hospitalization (192/559 = 34.35%) or resulted in death (185/559 = 33.09%). Within the same time frame, YCS collected some 3,566 misuse/abuse/dependence/withdrawal ADRs, corresponding to 1,165 single patients/cases, with those most frequently reported being "withdrawal," "intentional product misuse," and "overdose" ADRs. Finally, FAERS identified a total of 19,145 misuse/abuse/dependence/withdrawal-related cases, being "overdose," withdrawal, and "drug use disorder/drug abuse/drug diversion" the most represented ADRs (respectively, 43.11, 20.80, and 20.29%). Conclusion: Fentanyl abuse may be considered a public health issue with significant implications for clinical practice. Spontaneous pharmacovigilance reporting systems should be considered for mapping new trends of drug abuse.Peer reviewe
Racing against COVID-19: a vaccines strategy for Europe. Bruegel Policy Contribution Issue n˚7 | April 2020
The fast development of vaccines is an essential part of the long-term solution to
COVID-19, but vaccine development has high costs and carries the risk of high failure rates.
There are currently too few promising projects in the clinical trial pipeline to guarantee
at least one vaccine soon. More projects need to pass through the development pipeline in
parallel. Vaccines should ultimately be widely available to all who need them at low cost.
Private life-sciences companies under-invest in vaccine development, especially
when compulsory licensing and/or price regulations are imposed. Public funding is needed
to reduce the risks of investing in vaccine development, and also to balance compulsory
licensing and/or price regulations with incentives for private firms.
The public funding being put into identifying COVID-19 vaccines is too limited to carry
enough projects through so that at least one vaccine, and preferably more, become available
at large scale and low cost. Public budgets for these efforts need to be multiplied up several
times over. We propose a staged support scheme to tackle the COVID-19 vaccine challenge
and a moon shot programme to meet the challenge of future pandemics. We calculate the
public budget needed to ensure supply of COVID-19 vaccines. Although substantial, the
budget represents a bargain compared to the avoided health, social and economic costs
Semiquantitative activity-based detection of JWH-018, a synthetic cannabinoid receptor agonist, in oral fluid after vaping
The rapid proliferation of new synthetic cannabinoid receptor agonists (SCRAs) has initiated considerable interest in the development of so-called “untargeted” screening strategies. One of these new screening technologies involves the activity-based detection of SCRAs. In this study, we evaluated whether (synthetic) cannabinoid activity can be detected in oral fluid (OF) and, if
so, whether it correlates with SCRA concentrations. OF was collected at several time points in a placebo-controlled JWH-018 administration study. The outcome of the cell-based cannabinoid reporter system, which monitored the cannabinoid receptor activation, was compared to the quantitative data for JWH-018, obtained via a validated liquid chromatography-tandem mass
spectrometry (LC-MS/MS) method. A total of 175 OF samples were collected and analyzed via both methods. The cannabinoid reporter assay correctly classified the vast majority of the samples as either negative (<0.25 ng/mL; 74/75 = 99%) or having low
(0.25−1.5 ng/mL; 16/16 = 100% and 1.5−10 ng/mL; 37/41 = 90%), mid (10−100 ng/mL; 23/25 = 92%) or high (>100 ng/mL; 16/18 = 89%) JWH-018 concentrations. Passing−Bablok regression analysis yielded a good linear correlation, with no proportional difference between both methods (slope 0.97; 95% confidence interval 0.86−1.14) and only a small systematic difference. This is the first study to demonstrate the applicability of an untargeted, activity-based approach for SCRA detection in OF. Additionally, the outcome of the cannabinoid reporter assay was compared to the gold standard (LC-MS/MS), showing a good correlation between
both methods, indicating that the cannabinoid reporter assay can be used for an estimation of drug concentrations
Therapeutic Delivery Technology and its Economic Impact
Therapeutic delivery technology is a current area of high interest in both university and industrial settings. These technologies are being developed in order to deliver therapeutic agents, such as genes, proteins, and drugs, to patients more efficiently. Nanoscale delivery vehicles have proven to be useful for these applications; these vehicles may either be naturally produced or chemically synthesized. The physical properties of these nanomaterials must be characterized correctly using instrumentation that evaluates their size, morphology, and potential for agglomeration. These technologies represent a high-growth economic area that fosters entrepreneurship and innovation. Because of this innovative spirit, research and economic interest will continue to be focused on therapeutic delivery technologies
Therapeutic approaches with intravitreal injections in geographic atrophy secondary to age-related macular degeneration: current drugs and potential molecules
The present review focuses on recent clinical trials that analyze the efficacy of
intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD),
such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or
anti-inflammatory agents. A systematic literature search was performed to identify randomized
controlled trials published prior to January 2019. Patients affected by dry AMD treated with
intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in
geographic atrophy progression were evaluated. Several new drugs have shown promising results,
including those targeting the complement cascade and neuroprotective agents. The potential action
of the two groups of drugs is to block complement cascade upregulation of immunomodulating
agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors,
respectively. Our analysis indicates that finding treatments for dry AMD will require continued
collaboration among researchers to identify additional molecular targets and to fully interrogate the
utility of pluripotent stem cells for personalized therapy
Recommended from our members
Nanomolar-potency 'co-potentiator' therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants.
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR
Recommended from our members
Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics.
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient
- …
