2,339 research outputs found

    Learning garment manipulation policies toward robot-assisted dressing.

    Get PDF
    Assistive robots have the potential to support people with disabilities in a variety of activities of daily living, such as dressing. People who have completely lost their upper limb movement functionality may benefit from robot-assisted dressing, which involves complex deformable garment manipulation. Here, we report a dressing pipeline intended for these people and experimentally validate it on a medical training manikin. The pipeline is composed of the robot grasping a hospital gown hung on a rail, fully unfolding the gown, navigating around a bed, and lifting up the user's arms in sequence to finally dress the user. To automate this pipeline, we address two fundamental challenges: first, learning manipulation policies to bring the garment from an uncertain state into a configuration that facilitates robust dressing; second, transferring the deformable object manipulation policies learned in simulation to real world to leverage cost-effective data generation. We tackle the first challenge by proposing an active pre-grasp manipulation approach that learns to isolate the garment grasping area before grasping. The approach combines prehensile and nonprehensile actions and thus alleviates grasping-only behavioral uncertainties. For the second challenge, we bridge the sim-to-real gap of deformable object policy transfer by approximating the simulator to real-world garment physics. A contrastive neural network is introduced to compare pairs of real and simulated garment observations, measure their physical similarity, and account for simulator parameters inaccuracies. The proposed method enables a dual-arm robot to put back-opening hospital gowns onto a medical manikin with a success rate of more than 90%

    Learning Real-world Autonomous Navigation by Self-Supervised Environment Synthesis

    Full text link
    Machine learning approaches have recently enabled autonomous navigation for mobile robots in a data-driven manner. Since most existing learning-based navigation systems are trained with data generated in artificially created training environments, during real-world deployment at scale, it is inevitable that robots will encounter unseen scenarios, which are out of the training distribution and therefore lead to poor real-world performance. On the other hand, directly training in the real world is generally unsafe and inefficient. To address this issue, we introduce Self-supervised Environment Synthesis (SES), in which, after real-world deployment with safety and efficiency requirements, autonomous mobile robots can utilize experience from the real-world deployment, reconstruct navigation scenarios, and synthesize representative training environments in simulation. Training in these synthesized environments leads to improved future performance in the real world. The effectiveness of SES at synthesizing representative simulation environments and improving real-world navigation performance is evaluated via a large-scale deployment in a high-fidelity, realistic simulator and a small-scale deployment on a physical robot

    Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation

    Get PDF
    We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems. Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool, inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and animation videos to demonstrate the signal processing and control architecture in action

    Design agency:prototyping multi-agent systems in architecture

    Get PDF
    This paper presents research on the prototyping of multi-agent systems for architectural design. It proposes a design exploration methodology at the intersection of architecture, engineering, and computer science. The motivation of the work includes exploring bottom up generative methods coupled with optimizing performance criteria including for geometric complexity and objective functions for environmental, structural and fabrication parameters. The paper presents the development of a research framework and initial experiments to provide design solutions, which simultaneously satisfy complexly coupled and often contradicting objectives. The prototypical experiments and initial algorithms are described through a set of different design cases and agents within this framework; for the generation of façade panels for light control; for emergent design of shell structures; for actual construction of reciprocal frames; and for robotic fabrication. Initial results include multi-agent derived efficiencies for environmental and fabrication criteria and discussion of future steps for inclusion of human and structural factors

    On the determination of human affordances

    Get PDF
    • …
    corecore