2,300,622 research outputs found
Recommended from our members
BIF : a behavioral intermediate format for high level synthesis
This report describes a new intermediate format for behavioral synthesis systems, based on annotated state tables. It supports user control of the synthesis process by allowing specification of partial design structures, user-bindings and user modification of compiled designs. It is a simple and uniform representation that can be used as an intermediate exchange format for various behavioral synthesis tools. The format captures synchronous and asynchronous behavior, and serves as a good interface to the user by linking behavior and structure at each level of abstraction in the behavioral synthesis process
Synthesis process of nanowired Al/CuO thermite.
Al/CuO nanothermites were fabricated by thermal oxidation of copper layer at 4501C for 5 hand by aluminum thermal evaporation: thermal evaporation allows producing thin layer less than 2 mminsize. The copper has been deposited by electroplating or thermal evaporation depending on the required thickness. The obtained diameter of Al/CuO nanowiresis 150–250nm. Al/CuO nanowires composite were characterized by scanning electronmicroscopy (SEM), X-raydiffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Two distinct exothermicreactions occurred at 515 and 6671C and total energy release of this thermite is 10kJ/cm
Effect of Thiols for Nitrogen Reduction to Ammonia
Ammonia is an important chemical used for fertilizers and also a potential carbon-free hydrogen storage medium. The Haber-Bosch process is the main production process, which requires large energy- and capital-input. Therefore, it is crucial to develop an alternate scalable synthesis that provides a less energy intensive and more economical route for synthetic ammonia production. In this paper, a 1Fe1Ni film was functionalized with C3OH and C6OH for the electrochemical synthesis of ammonia. This work will provide some insight into how thiol ligands can increase the selectivity of the catalyst for nitrogen reduction reaction and can be improved on to provide a new synthesis for ammonia
Machine learning-guided synthesis of advanced inorganic materials
Synthesis of advanced inorganic materials with minimum number of trials is of
paramount importance towards the acceleration of inorganic materials
development. The enormous complexity involved in existing multi-variable
synthesis methods leads to high uncertainty, numerous trials and exorbitant
cost. Recently, machine learning (ML) has demonstrated tremendous potential for
material research. Here, we report the application of ML to optimize and
accelerate material synthesis process in two representative multi-variable
systems. A classification ML model on chemical vapor deposition-grown MoS2 is
established, capable of optimizing the synthesis conditions to achieve higher
success rate. While a regression model is constructed on the
hydrothermal-synthesized carbon quantum dots, to enhance the process-related
properties such as the photoluminescence quantum yield. Progressive adaptive
model is further developed, aiming to involve ML at the beginning stage of new
material synthesis. Optimization of the experimental outcome with minimized
number of trials can be achieved with the effective feedback loops. This work
serves as proof of concept revealing the feasibility and remarkable capability
of ML to facilitate the synthesis of inorganic materials, and opens up a new
window for accelerating material development
A chemoselective and continuous synthesis of m-sulfamoylbenzamide analogues
For the synthesis of m-sulfamoylbenzamide analogues, small molecules which are known for their bioactivity, a chemoselective procedure has been developed starting from m-(chlorosulfonyl) benzoyl chloride. Although a chemoselective process in batch was already reported, a continuous-flow process reveals an increased selectivity at higher temperatures and without catalysts. In total, 15 analogues were synthesized, using similar conditions, with yields ranging between 65 and 99%. This is the first automated and chemoselective synthesis of m- sulfamoylbenzamide analogues
Optimization of casting process parameters for synthesis of Al-Nb-B master alloy
Al-Nb-B master alloys were synthesized using commercial pure aluminum, niobium, and KBF4 salts. Two different sources of Nb (pure Nb powder and Al-60%Nb powder) were used to prepare the master alloy. Casting process parameters such as reaction time and melt stir time interval were varied to enhance the formation of in situ intermetallic particles in the master alloys. The size, shape and distribution of intermetallic particles in these master alloys were studied using microscopy techniques. The results show that the Al-5Nb-1B master alloy prepared with Al-60%Nb powders has a uniform distribution of intermetallic particles as compared to the master alloy prepared with pure Nb powders. Increase in boron content from 1 wt.% to 2 wt.% in the master alloys resulted in a higher fraction of intermetallic particles. Among all the master alloys synthesized, Al-5Nb-2B was observed to have the highest number of well-distributed intermetallic particles which could act as potential grain refiners of aluminum alloys
Reconstitution of recombination-associated DNA synthesis with human proteins.
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp PCNA. Translesion synthesis polymerase eta (η) also extends these substrates, albeit far less processively. The single-stranded DNA binding protein RPA facilitates recombination-mediated DNA synthesis by increasing the efficiency of primer utilization, preventing polymerase stalling at specific sequence contexts, and overcoming polymerase stalling caused by topological constraint allowing the transition to a migrating D-loop. Our results support a model whereby the high-fidelity replicative DNA polymerase δ performs recombination-associated DNA synthesis, with translesion synthesis polymerases providing a supportive role as in normal replication
How do systematic reviews incorporate risk of bias assessments into the synthesis of evidence? A methodological study
Background: Systematic reviews (SRs) are expected to critically appraise included studies and privilege those at lowest risk of bias (RoB) in the synthesis. This study examines if and how critical appraisals inform the synthesis and interpretation of evidence in SRs.<p></p>
Methods: All SRs published in March–May 2012 in 14 high-ranked medical journals and a sample from the Cochrane library were systematically assessed by two reviewers to determine if and how: critical appraisal was conducted; RoB was summarised at study, domain and review levels; and RoB appraisals informed the synthesis process.<p></p>
Results: Of the 59 SRs studied, all except six (90%) conducted a critical appraisal of the included studies, with most using or adapting existing tools. Almost half of the SRs reported critical appraisal in a manner that did not allow readers to determine which studies included in a review were most robust. RoB assessments were not incorporated into synthesis in one-third (20) of the SRs, with their consideration more likely when reviews focused on randomised controlled trials. Common methods for incorporating critical appraisals into the synthesis process were sensitivity analysis, narrative discussion and exclusion of studies at high RoB. Nearly half of the reviews which investigated multiple outcomes and carried out study-level RoB summaries did not consider the potential for RoB to vary across outcomes.<p></p>
Conclusions: The conclusions of the SRs, published in major journals, are frequently uninformed by the critical appraisal process, even when conducted. This may be particularly problematic for SRs of public health topics that often draw on diverse study designs
Recommended from our members
VHDL synthesis system (VSS) : user's manual, version 5.0
This report provides instructions for installing and using the VHDL Synthesis System (Version 5.0). VSS is a high level synthesis sytem that synthesizes structures from an abstract description, written with VHDL behavioral constructs. The system uses components from a generic component library (GENUS). The output of VSS is in structural VHDL and could be verified using a commercial VHDL simulator. The designer can control the synthesis process by providing different resource constraints to the system. VSS is also capable of producing different architectures which can be selected by the designer
Synthesis of porous silicates
The issues of importance and future concern in the synthesis of porous silicates and porous materials that contain a large fraction of silica, e.g. zeolites and other crystalline molecular sieves, are reviewed. The thermodynamics of zeolite synthesis are discussed, including a detailed thermodynamic analysis of the synthesis of pure-silica ZSM-5. The kinetics of porous silicate synthesis are reviewed, with particular emphasis on the control of porous structure formation through the use of organic structure-directing agents. Ordered mesoporous materials are discussed in the context of distinguishing their features from zeolites in order to describe further the unique properties of each class of material. Finally, several unresolved issues in the understanding of the synthesis process are outlined, the resolutions of which would aid in the synthesis of porous silicates by design
- …
