22 research outputs found
The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction
The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2*21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings
A Review on the Effects of Organic Structure-Directing Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites
The study on the synthesis of zeolites, including both the development of novel techniques of synthesis and the discovery of new zeolitic frameworks, has a background of several decades. In this context, the application of organic structure-directing agents (SDAs) is one of the key factors having an important role in the formation of porous zeolitic networks as well as the crystallization process of zeolites. There are various elements that are needed to be explored for elucidating the effects of organic SDAs on the final physicochemical properties of zeolites. Although SDAs were firstly used as pore generators in the synthesis of high-silica zeolites, further studies proved their multiple roles during the synthesis of zeolites, such as their influences on the crystallization evolution of zeolite, the size of the crystal and the chemical composition, which is beyond their porogen properties. The aim of this mini review is to present and briefly summarize these features as well as the advances in the synthesis of new SDAs during the last decades
Structure direction in the formation of zeolitic materials
Structure direction in the formation of zeolitic materials has been investigated through the parallel approaches of structural and synthesis studies. The structures of
gallosilicates TNU-6 and TNU-7 have been solved from powder X-ray diffraction.
TNU-6 (P6₃, a = b = 10.5078(1)Å, c = 8.5277(1)Å) is found to possess a stuffed
tridymite-like structure isostructural with BaFeGaO₄. Evidence from electron diffraction, single crystal and high-resolution powder X-ray diffraction suggests the
presence of a √3a superstructure, analogous to the related KAlGeO₄ phase, arising from
a subtle variation in tilt of tetrahedral units. The structure of TNU-7 consists of an
ordered 1:1 intergrowth of alternating sheets of mazzite and mordenite (Pmmn, a =
7.5721(1)Å, b = 17.0739(2)Å, c = 25.8438(5)Å). The crystallisation field of TNU-7 is found to lie between those of mazzite and mordenite, suggesting that this is an example of a ‘boundary phase’ - phase selectivity being governed strongly by the presence and quantity of Ga in the synthesis gel. The distribution of extra-framework Na⁺ cations in the as-made material, and Cs⁺ and Sr²⁺ in ion-exchanged samples, suggests a higher extra-framework charge per T-site associated with the mazzite region of the structure, indicating the possible existence of compositional zoning, consistent with the preference to form mazzite at high Ga gel-content. The structures and synthesis conditions for both TNU-6 and TNU-7 suggests a cooperative effect between Ga and extra-framework species in directing the formation of these phases. 
The structure of the novel aluminosilicate TNU-9 has been confirmed by energy minimisation and powder neutron diffraction studies (C2/m, a = 28.177(2)Å, b =
20.030(1)Å, c = 19.464(1)Å, β = 92.311(4)º
). Monte Carlo-Simulated Annealing studies
have been employed to investigate the favoured location of the 1,4-bis(N-
methylpyrrolidinium)butane template molecule within the complex pore system. Remarkably, three (possibly four) different positions are assumed by the structure-directing agent, forming head-to-middle and head-to-head motifs between constituent framework aluminosilicate sheets. TNU-9 crystallises in a very narrow gel composition window suggesting a strong cooperative effect between organic and inorganic gel components. Structure direction of phosphate-based materials (aluminophosphates, magnesium
aluminophosphates and silicoaluminophosphates) has been investigated through co-templating synthesis studies. In particular, the structure-directing activity of Cu²⁺ (and
to a lesser extent Ni²⁺) complexes of the azamacrocyles cyclam and cyclen, and related
derivatives, is investigated in the presence of additional amines (dipropylamine,
diisopropylamine, tetraethylammonium hydroxide, diisopropylethylamine). Complexes
of a selection of linear polyamines, and also cobalticinium are studied for comparison.
Although added primarily as pH moderators, the additional amines are also found to
influence the crystallisation and hence provide effective routes to the synthesis of
transition metal-containing materials with potential catalytic application. The ‘strength’ of the structure-directing ability of the additional amines is found to vary depending on the identity of the primary structure-directing agent, with behaviour ranging from passive pH moderator to dominating structure-directing agent. The outcome of syntheses is also highly dependent on inorganic gel composition. Through appropriate combination of structure-directing agent and additional amine, mixed Cu²⁺/Ni²⁺-containing MgAPO and SAPO STA-6 (SAS) and STA-7 (SAV)
materials have been synthesised for the first time, as well as a low Si form of SAPO STA-7 (with and without Cu²⁺). Also, the combination of cyclam, tetraethylammonium
hydroxide and HF has been found to produce a SAPO analogue of STA-7 possessing silicate islands. In addition, transition metal-containing materials possessing the AEL, AFI, CHA, UT-6 and LEV topologies have also been synthesised via this approach.
Elemental analysis, UV-Vis, ESR and NMR spectroscopy are employed to confirm the
presence of the desired complex in selected samples, while X-ray diffraction and ESR
spectroscopy are employed to investigate the environment of extra-framework transition
metal species, post calcination, in MgAPO STA-6, SAPO STA-6 and STA-7, MgAPO-18, and MgAPO-5
Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials
Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions
Synthesis and Characterization of Zeolitic Materials Using Phosphorous Organic Structure Directing Agents
[ES] Las zeolitas son materiales cristalinos microporosos con canales y tamaños de poro de dimensiones moleculares. La estructura y composición de las zeolitas les confiere interesantes propiedades que permiten su aplicación en una amplia gama de aplicaciones industriales como adsorción, separación o catálisis. La síntesis de zeolitas es la etapa más importante para el control de la estructura y composición de las zeolitas y, por tanto, crítica para la optimización de sus propiedades.
Esta tesis se ha centrado en la síntesis de zeolitas utilizando compuestos que contienen fósforo (cationes fosfonio y aminofosfonio) como Agentes Directores de Estructura (P-ADE). El uso de compuestos fosforados influye en la cristalización y propiedades de las zeolitas obtenidas en comparación con las zeolitas obtenidas con cationes de amonio clásicos.
Los compuestos fosforados se eligieron debido a su diferente química y estabilidad con respecto a los cationes de amonio clásicos comúnmente usados en la síntesis de zeolitas. Estos aspectos se estudiaron con un estudio comparativo de diferentes cationes de amonio y fosforados.
Los compuestos de fósforo utilizados en este trabajo han dado lugar a nuevas estructuras cristalinas (ITQ-58 e ITQ-66) y han abierto nuevas vías de síntesis de zeolitas ya conocidas (RTH, IWV y DON), ampliando su gama de composiciones químicas.
La descomposición térmica de los P-ADE confinados dentro de las zeolitas da lugar a la formación de especies de fósforo extra-red que permanecen dentro de los canales y cavidades de las zeolitas. Estas especies modulan las propiedades ácidas y de adsorción de los materiales finales dependiendo de los tratamientos post-síntesis. En este trabajo se ha estudiado una ruta para la incorporación de cantidades controladas de fósforo durante la etapa de síntesis. Esto ha permitido controlar la adsorción y las propiedades ácidas en las zeolitas de poro pequeño, lo que no se puede lograr mediante metodologías de post-síntesis.[CA] Les zeolites són materials cristal·lins microporosos amb canals i mides de porus de dimensions moleculars. L'estructura i composició de les zeolites els confereix interessants propietats que permeten la seua aplicació en una àmplia gamma d'aplicacions industrials com adsorció, separació o catàlisi. La síntesi de zeolites és l'etapa més important per al control de l'estructura i composició de les zeolites i, per tant, crítica per a l'optimització de les seues propietats.
Aquesta tesi s'ha centrat en la síntesi de zeolites utilitzant compostos que contenen fòsfor (cations fosfoni i aminofosfoni) com a agents directors d'estructura (P-ADE). L'ús de compostos fosforats influeix en la cristal·lització i propietats de les zeolites obtingudes en comparació amb les zeolites obtingudes amb cations d'amoni clàssics.
Els compostos fosforats es van triar a causa de la seua diferent química i estabilitat pel que fa als cations d'amoni clàssics utilitzats en la síntesi de zeolites. Aquests aspectes s¿estudiaren amb un estudi comparatiu de diferents cations d'amoni i fosforats.
Els compostos de fòsfor utilitzats en aquest treball han donat lloc a noves estructures cristal·lines (ITQ-58 i ITQ-66) i han obert noves vies de síntesi de zeolites ja conegudes (RTH, IWV i DO), ampliant la seua gamma de composicions químiques.
La descomposició tèrmica dels P-ADE atrapats dins de les zeolites dona lloc a la for-mació d'espècies de fòsfor extra-xarxa que romanen dins dels canals i cavitats de les zeolites. Aquestes espècies modulen les propietats àcides i d'adsorció dels materials finals depenent dels tractaments post-síntesi. En aquest treball s'ha estudiat una ruta per la incorporació de quantitats controlades de fòsfor durant l'etapa de síntesi. Això ha permés controlar l'adsorció i les propietats àcides en les zeolites de porus petit, el que no es pot aconseguir mitjançant metodologies de post-síntesi.[EN] Zeolites are microporous crystalline materials with channels and pore openings of molecular dimensions. The structure and composition of zeolites confers them interesting properties that allow their application in a wide range of industrial applications as adsorption, separation or catalysis. The synthesis of zeolites is the most important stage to control the structure and composition of zeolites, and thus, critical to optimize their properties.
This thesis has been focused on the synthesis of zeolites using phosphorous containing compounds (phosphonium and aminophosphonium cations) as Organic Structure Directing Agents (P-OSDA). The use of these phosphorous compounds influence the crystallization and properties of the obtained zeolites compared to zeolites obtained with classical ammo-nium cations.
Phosphorous compounds were chosen because of their different chemistry and stabil-ity properties respect to classical ammonium cations commonly used in the synthesis of zeo-lites. These aspects were studied in a comparative study with different ammonium and phosphorous cations.
The phosphorous compounds used in this work have yielded new crystalline structures (ITQ-58 and ITQ-66) and opened new routes for the synthesis of already known zeolites (RTH, IWV and DON), widening their chemical composition range.
The thermal decomposition of the P-OSDAs entrapped inside the zeolites yields to the formation of extra-framework phosphorus species that remain inside the channels and voids of the zeolites. These species modulate the adsorption and acid properties of the final materials depending on the post-synthesis treatments. In this work, a route for the incorporation of controlled amounts of phosphorus during the synthesis stage has been studied. This has allowed to control the adsorption and acid properties in small pores zeolites, which cannot be achieved by post-synthesis methodologies.I wish to firstly acknowledge the Spanish Government for the necessary funding for
the FPI pre-doctoral fellowship (BES-2013-062999). Also, this thesis would not have been
possible without the infrastructures provided by the UPV and the CSIC staff, fused into the
ITQ. Furthermore, I want to acknowledge the Microscopy Service of the UPV for their support in sample microscopy characterizationSimancas Coloma, J. (2021). Synthesis and Characterization of Zeolitic Materials Using Phosphorous Organic Structure Directing Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171267TESI
Zeolites and ordered porous solids: fundamentals and applications
Pérez  Pariente, J.; Martínez Sánchez, MC. (2011). Zeolites and ordered porous solids: fundamentals and applications. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/11205Archivo delegad
Synthesis of new zeolite structures
[EN] The search for new zeolites is of continuous interest in the field of zeolite science because of their
widespread application in catalysis and adsorption¿separation. To this end, considerable efforts have been
devoted to the preparation of new zeolites with novel porous architectures and compositions. Taking
account of the key factors governing the formation of zeolites (e.g., guest species, framework elements,
construction processes, etc.), several synthetic strategies have been developed recently. These allow the
discovery of many new zeolites with unprecedented structural features, such as hierarchical pores, odd-ring
numbers (11-, 15-rings), extra-large pores (16-, 18-, 20-, 28-, and 30-rings), chiral pores, and extremely
complex framework topologies, etc. In this review, we will present the advances in the synthesis of new
zeolite structures in the last decade, which are achieved by utilization of the synthetic strategies based on
pre-designed structure-directing agents, heteroatom substitution, and topotactic transformations.Li, J.; Corma Canós, A.; Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews. 44(20):7112-7127. doi:10.1039/c5cs00023hS71127127442
Layered Materials with Catalytic Applications: Pillared andDelaminated Zeolites from MWW Precursors
[EN] Delaminated and pillared zeolites are an innovative family of molecular sieves which introduced a different concept inside the synthesis of active catalysts or inorganic supports. These types of materials exhibit an elevated accessibility due to their open structure, characterized by the high external surface area without imposed restrictions controlled by the pore sizes. These open zeolites are conformed by crystalline ordered (pillared zeolites) or disordered (delaminated zeolites) individual layers, exhibiting textural properties which are favorable to carry out catalytic processes in which it is necessary to employ catalysts with completely accessible active sites. The elevated external surface area of these zeolites is profitable to generate more specific organic-inorganic materials, acting in this case as stable inorganic matrixes. The preparation of this open type-zeolites family is based on the modification of, previously synthesized, zeolitic precursors which are preexpanded to obtain the final delaminated or pillared zeolites which exhibit very different physicochemical properties compared with the starting precursors. Along this paper, the most relevantMWW-type high accessible zeoliticmaterials will be considered. Their nature, characteristics, and reactivity will be shown in the function of the employed synthesis method for their preparation and the postsynthesis treatments carried out, tuning their properties.The author thanks the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009–00050) and MAT2011–29020-C02-01) for the financial support.Díaz Morales, UM. (2012). Layered Materials with Catalytic Applications: Pillared andDelaminated Zeolites from MWW Precursors. ISRN Chemical Engineering. 2012(ID 537164):1-35. https://doi.org/10.5402/2012/537164S1352012ID 53716
Layered zeolitic materials: an approach to designing versatile functional solids
Relevant layered zeolites have been considered in this perspective article from the point of view of the
synthesis methodologies, materials characterization and catalytic implications, considering the unique
physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to
generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/
or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by
layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic
structural units through the use of dual structural directing agents, the selective modification of germanosilicates
and the direct generation of lamellar hybrid organic inorganic aluminosilicates are also considered
to obtain layered solids with well-defined functionalities. The catalytic applications of the layered
zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the
lamellar framework.The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267.Díaz Morales, UM.; Corma Canós, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions. 43(27):10292-10316. https://doi.org/10.1039/c3dt53181cS10292103164327Mallouk, T. E., & Gavin, J. A. (1998). Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 31(5), 209-217. doi:10.1021/ar970038pSuslick, K. S., & Price, G. J. (1999). APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. Annual Review of Materials Science, 29(1), 295-326. doi:10.1146/annurev.matsci.29.1.295Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., & Zhang, J. (2013). Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chemical Communications, 49(60), 6770. doi:10.1039/c3cc42418aLi, H., Zhang, D., Maitarad, P., Shi, L., Gao, R., Zhang, J., & Cao, W. (2012). In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chemical Communications, 48(86), 10645. doi:10.1039/c2cc34758jWang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745. doi:10.1039/c2jm35340gZhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696. doi:10.1039/c2jm31393fRavishankar, R., Joshi, P. N., Tamhankar, S. S., Sivasanker, S., & Shiralkar, V. P. (1998). A Novel Zeolite MCM-22: Sorption Characteristics. Adsorption Science & Technology, 16(8), 607-621. doi:10.1177/026361749801600803Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027bLeonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871eKennedy, G. J., Lawton, S. L., Fung, A. S., Rubin, M. K., & Steuernagel, S. (1999). Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 49(4), 385-399. doi:10.1016/s0920-5861(98)00444-1Santos Marques, A. L., Fontes Monteiro, J. L., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32(1-2), 131-145. doi:10.1016/s1387-1811(99)00099-2Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1-3), 78-87. doi:10.1016/j.micromeso.2006.07.015Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4Ravishankar, R., Sen, T., Ramaswamy, V., Soni, H. S., Ganapathy, S., & Sivasanker., S. (1994). Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 331-338. doi:10.1016/s0167-2991(08)64131-2Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31(3), 241-251. doi:10.1016/s1387-1811(99)00075-xWang, Y.-M., Shu, X.-T., & He, M.-Y. (2001). 02-P-34 - Static synthesis of zeolite MCM-22. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 194. doi:10.1016/s0167-2991(01)81373-2Chan, I. Y., Labun, P. A., Pan, M., & Zones, S. I. (1995). High-resolution electron microscopy characterization of SSZ-25 zeolite. Microporous Materials, 3(4-5), 409-418. doi:10.1016/0927-6513(94)00050-6Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319kAguilar, J., Corma, A., Melo, F. V., & Sastre, E. (2000). Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today, 55(3), 225-232. doi:10.1016/s0920-5861(99)00250-3Camblor, M. A., Corell, C., Corma, A., Díaz-Cabañas, M.-J., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1996). A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chemistry of Materials, 8(10), 2415-2417. doi:10.1021/cm960322vNicolopoulos, S., González-Calbet, J. M., Vallet-Regi, M., Camblor, M. A., Corell, C., Corma, A., & Diaz-Cabañas, M. J. (1997). Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison. Journal of the American Chemical Society, 119(45), 11000-11005. doi:10.1021/ja963703iMillini, R., Perego, G., Parker, W. O., Bellussi, G., & Carluccio, L. (1995). Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 4(2-3), 221-230. doi:10.1016/0927-6513(95)00013-yKhouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. Journal of Catalysis, 202(2), 245-255. doi:10.1006/jcat.2001.3278Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105(15), 2897-2905. doi:10.1021/jp002816sWu, P., & Tatsumi, T. (2001). Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chemical Communications, (10), 897-898. doi:10.1039/b101426iSasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440Wu, P., & Tatsumi, T. (2002). Uniquetrans-Selectivity of Ti-MWW in Epoxidation ofcis/trans-Alkenes with Hydrogen Peroxide. The Journal of Physical Chemistry B, 106(4), 748-753. doi:10.1021/jp0120965Wu, P., & Tatsumi, T. (2002). Preparation of B-free Ti-MWW through reversible structural conversion. Chemical Communications, (10), 1026-1027. doi:10.1039/b201170kFan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723Kim, S. J., Jung, K.-D., & Joo, O.-S. (2004). Synthesis and Characterization of Gallosilicate Molecular Sieve with the MCM-22 Framework Topology. Journal of Porous Materials, 11(4), 211-218. doi:10.1023/b:jopo.0000046348.23346.ddTeixeira-Neto, A. A., Marchese, L., Landi, G., Lisi, L., & Pastore, H. O. (2008). [V,Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane. Catalysis Today, 133-135, 1-6. doi:10.1016/j.cattod.2007.11.012Wu, Y., Wang, J., Liu, P., Zhang, W., Gu, J., & Wang, X. (2010). Framework-Substituted Lanthanide MCM-22 Zeolite: Synthesis and Characterization. Journal of the American Chemical Society, 132(51), 17989-17991. doi:10.1021/ja107633jIkeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305qTsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872eIkeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026nXu, H., Yang, B., Jiang, J., Jia, L., He, M., & Wu, P. (2013). Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous and Mesoporous Materials, 169, 88-96. doi:10.1016/j.micromeso.2012.10.005Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1997). A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1949-1956. doi:10.1016/s0167-2991(97)80659-3Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415dYang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243qMillini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007García, R., Gómez-Hortigüela, L., Díaz, I., Sastre, E., & Pérez-Pariente, J. (2008). Synthesis of Materials Containing Ferrierite Layers Using Quinuclidine and 1-Benzyl-1-methylpyrrolidine as Structure-Directing Agents. An Experimental and Computational Study†. Chemistry of Materials, 20(3), 1099-1107. doi:10.1021/cm702098jAndrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., & Kennedy, G. J. (2002). MCM-69, a novel layered analogue of EU-19. Microporous and Mesoporous Materials, 53(1-3), 179-193. doi:10.1016/s1387-1811(02)00338-4Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085Araki, T. (1980). Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Zeitschrift für Kristallographie, 152(3-4), 207-213. doi:10.1524/zkri.1980.152.3-4.207Hughes, R. W., & Weller, M. T. (2002). The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction MAS and NMR. Microporous and Mesoporous Materials, 51(3), 189-196. doi:10.1016/s1387-1811(01)00476-0Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT  ’95, 301-308. doi:10.1016/s0167-2991(06)81236-xEder, F., He, Y., Nivarthy, G., & Lercher, J. A. (2010). Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil des Travaux Chimiques des Pays-Bas, 115(11-12), 531-535. doi:10.1002/recl.19961151114He, Y. ., Nivarthy, G. ., Eder, F., Seshan, K., & Lercher, J. . (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25(1-3), 207-224. doi:10.1016/s1387-1811(98)00210-8Corma, A., Fornés, V., Martı́nez-Triguero, J., & Pergher, S. B. (1999). Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. Journal of Catalysis, 186(1), 57-63. doi:10.1006/jcat.1999.2503J. Roth, W., C. Vartuli, J., & T. Kresge, C. (2000). Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. Studies in Surface Science and Catalysis, 501-508. doi:10.1016/s0167-2991(00)80251-7Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824bBARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021Kornatowski, J., Barth, J.-O., & Lercher, J. A. (2005). New modifications of layered MCM-36 molecular sieve pillared with various mixed oxides: facts and perspectives. Studies in Surface Science and Catalysis, 349-356. doi:10.1016/s0167-2991(05)80228-9Barth, J.-O., Jentys, A., Kornatowski, J., & Lercher, J. A. (2004). Control of Acid−Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 16(4), 724-730. doi:10.1021/cm0349607Schenkel, R., Barth, J. O., Kornatowski, J., Jentys, A., & Lercher, J. A. (2004). Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 1598-1605. doi:10.1016/s0167-2991(04)80683-9Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711iLiu, D., Bhan, A., Tsapatsis, M., & Al Hashimi, S. (2010). Catalytic Behavior of Brønsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity. ACS Catalysis, 1(1), 7-17. doi:10.1021/cs100042rCorma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Wu, P., Kan, Q., Wang, D., Xing, H., Jia, M., & Wu, T. (2005). The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization. Catalysis Communications, 6(7), 449-454. doi:10.1016/j.catcom.2005.04.002Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338(1-2), 37-43. doi:10.1016/j.apcata.2007.12.024Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Studies in Surface Science and Catalysis, 1139-1142. doi:10.1016/s0167-2991(08)80087-0Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057Zhang, Y., Xing, H., Yang, P., Wu, P., Jia, M., Sun, J., & Wu, T. (2007). Alkylation of benzene with propylene over MCM-36: A comparative study with MCM-22 zeolite synthesized from the same precursors. Reaction Kinetics and Catalysis Letters, 90(1), 45-52. doi:10.1007/s11144-007-4972-0Meloni, D., Dumitriu, E., Monaci, R., & Solinas, V. (2008). Liquid-phase alkylation of phenol with t-Butanol over H-MCM-22, H-ITQ-2 and H-MCM-36 catalysts. Studies in Surface Science and Catalysis, 1111-1114. doi:10.1016/s0167-2991(08)80080-8Dumitriu, E., Fechete, I., Caullet, P., Kessler, H., Hulea, V., Chelaru, C., … Bourdon, X. (2002). Conversion of aromatic hydrocarbons over MCM-22 and MCM-36 catalysts. Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Proceedings of the 2nd International FEZA (Federation of the European Zeolite Associations) Conference, 951-958. doi:10.1016/s0167-2991(02)80123-9Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., & Hulea, V. (2011). Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Applied Catalysis A: General, 402(1-2), 208-217. doi:10.1016/j.apcata.2011.06.003Barth, J., Jentys, A., & Lercher, J. A. (2004). Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2441-2448. doi:10.1016/s0167-2991(04)80509-3Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049Zhu, J., Cui, Y., Wang, Y., & Wei, F. (2009). Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, (22), 3282. doi:10.1039/b902661dWang, Y. J., Tang, Y., Wang, X. D., Dong, A. G., Shan, W., & Gao, Z. (2001). Fabrication of Hierarchically Structured Zeolites through Layer-by-Layer Assembly of Zeolite Nanocrystals on Diatom Templates. Chemistry Letters, 30(11), 1118-1119. doi:10.1246/cl.2001.1118Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B., & Mann, S. (2000). Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core−Shell Building Blocks. Chemistry of Materials, 12(10), 2832-2834. doi:10.1021/cm000438yCorma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System 
