5 research outputs found

    Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    Full text link
    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.Comment: 5 pages, 8 figures, Tenth International Conference on Document Analysis and Recognition (ICDAR), IEEE Computer Society, 2009, volume 10, 1325-132

    Employing fuzzy intervals and loop-based methodology for designing structural signature: an application to symbol recognition

    Full text link
    Motivation of our work is to present a new methodology for symbol recognition. We support structural methods for representing visual associations in graphic documents. The proposed method employs a structural approach for symbol representation and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an ARG and compute a signature from this structural graph. To address the sensitivity of structural representations to deformations and degradations, we use data adapted fuzzy intervals while computing structural signature. The joint probability distribution of signatures is encoded by a Bayesian network. This network in fact serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures, for underlying symbol set. Finally we deploy the Bayesian network in supervised learning scenario for recognizing query symbols. We have evaluated the robustness of our method against noise, on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates. A second set of experimentation was carried out for evaluating the performance of our method against context noise i.e. symbols cropped from complete documents. The results support the use of our signature by a symbol spotting system.Comment: 10 pages, Eighth IAPR International Workshop on Graphics RECognition (GREC), 2009, volume 8, 22-3

    Correspondence edit distance to obtain a set of weighted means of graph correspondences.

    Get PDF
    Given a pair of data structures, such as strings, trees, graphs or sets of points, several correspondences (also referred in literature as labellings, matchings or assignments) can be defined between their local parts. The Hamming distance has been largely used to define the dissimilarity of a pair of correspondences between two data structures. Although it has the advantage of being simple in computation, it does not consider the data structures themselves, which the correspondences relate to. In this paper, we extend the definitions of a recently presented distance between correspondences based on the concept of the edit distance, which we called Correspondence edit distance. Moreover, we present an algorithm to compute the set of weighted means between a pair of graph correspondences. Both the Correspondence edit distance and the computation of the set of weighted means are necessary for the calculation of a more representative prototype between a set of correspondences. In the validation section, we show how the use of the Correspondence edit distance increases the quality of the set of weighted means compared to using the Hamming distance

    Symbol Recognition: Current Advances and Perspectives

    Get PDF
    Abstract. The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content

    Relational Strategies for the Study of Visual Object Recognition

    Get PDF
    corecore