2,921 research outputs found

    On Model Based Synthesis of Embedded Control Software

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant. With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of set-up time), has a Worst Case Execution Time linear in the number of AD bits bb, but unfortunately, its size grows exponentially with respect to bb. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices. This paper addresses model based synthesis of control software by trading system level non-functional requirements (such us optimal set-up time, ripple) with software non-functional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.Comment: Accepted for publication by EMSOFT 2012. arXiv admin note: substantial text overlap with arXiv:1107.5638,arXiv:1207.409

    A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software

    Full text link
    Many Control Systems are indeed Software Based Control Systems, i.e. control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of control software. Available algorithms and tools (e.g., QKS) may require weeks or even months of computation to synthesize control software for large-size systems. This motivates search for parallel algorithms for control software synthesis. In this paper, we present a Map-Reduce style parallel algorithm for control software synthesis when the controlled system (plant) is modeled as discrete time linear hybrid system. Furthermore we present an MPI-based implementation PQKS of our algorithm. To the best of our knowledge, this is the first parallel approach for control software synthesis. We experimentally show effectiveness of PQKS on two classical control synthesis problems: the inverted pendulum and the multi-input buck DC/DC converter. Experiments show that PQKS efficiency is above 65%. As an example, PQKS requires about 16 hours to complete the synthesis of control software for the pendulum on a cluster with 60 processors, instead of the 25 days needed by the sequential algorithm in QKS.Comment: To be submitted to TACAS 2013. arXiv admin note: substantial text overlap with arXiv:1207.4474, arXiv:1207.409

    Approximately bisimilar symbolic models for nonlinear control systems

    Full text link
    Control systems are usually modeled by differential equations describing how physical phenomena can be influenced by certain control parameters or inputs. Although these models are very powerful when dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the physical world. For this reason there is a growing interest in describing control systems through symbolic models that are abstract descriptions of the continuous dynamics, where each "symbol" corresponds to an "aggregate" of states in the continuous model. Since these symbolic models are of the same nature of the models used in computer science to describe software and hardware, they provide a unified language to study problems of control in which software and hardware interact with the physical world. Furthermore the use of symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the symbolic model and can be rendered as small as desired. Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For digital control systems, and under the stronger assumption of incremental input-to-state stability, symbolic models can be constructed through a suitable quantization of the inputs.Comment: Corrected typo

    Model Based Synthesis of Control Software from System Level Formal Specifications

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.Comment: Accepted for publication by ACM Transactions on Software Engineering and Methodology (TOSEM

    On minimising the maximum expected verification time

    Get PDF
    Cyber Physical Systems (CPSs) consist of hardware and software components. To verify that the whole (i.e., software + hardware) system meets the given specifications, exhaustive simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) and then actually simulating all of them (verification phase). When considering the whole verification activity, we see that the above mentioned verification phase is repeated until no error is found. Accordingly, in order to minimise the time taken by the whole verification activity, in each verification phase we should, ideally, start by simulating scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of such scenarios is not feasible. In this paper we show how to select scenarios so as to minimise the Worst Case Expected Verification Tim

    Sparsity-Sensitive Finite Abstraction

    Full text link
    Abstraction of a continuous-space model into a finite state and input dynamical model is a key step in formal controller synthesis tools. To date, these software tools have been limited to systems of modest size (typically ≤\leq 6 dimensions) because the abstraction procedure suffers from an exponential runtime with respect to the sum of state and input dimensions. We present a simple modification to the abstraction algorithm that dramatically reduces the computation time for systems exhibiting a sparse interconnection structure. This modified procedure recovers the same abstraction as the one computed by a brute force algorithm that disregards the sparsity. Examples highlight speed-ups from existing benchmarks in the literature, synthesis of a safety supervisory controller for a 12-dimensional and abstraction of a 51-dimensional vehicular traffic network
    • …
    corecore