270 research outputs found

    Automatic Parallelization of Database Queries

    Get PDF
    Although automatic parallelization of conventional language programs is now widely accepted, relatively little emphasis has been placed on automatic parallelization of database query programs (sometimes referred to as “multiple queries” ). In this paper, we discuss the unique problems associated with automatic parallelization of database programs. From this discussion, we derive a complete approach to automatic parallelization of database programs. Beside integrating a number of existing techniques, our approach relies heavily on several new concepts, including the concepts of “algorithm-level” analysis and hybrid static/dynamic scheduling

    StreamDrive: A Dynamic Dataflow Framework for Clustered Embedded Architectures

    Get PDF
    In this paper, we present StreamDrive, a dynamic dataflow framework for programming clustered embedded multicore architectures. StreamDrive simplifies development of dynamic dataflow applications starting from sequential reference C code and allows seamless handling of heterogeneous and applicationspecific processing elements by applications. We address issues of ecient implementation of the dynamic dataflow runtime system in the context of constrained embedded environments, which have not been sufficiently addressed by previous research. We conducted a detailed performance evaluation of the StreamDrive implementation on our Application Specic MultiProcessor (ASMP) cluster using the Oriented FAST and Rotated BRIEF (ORB) algorithm typical of image processing domain.We have used the proposed incremental development flow for the transformation of the ORB original reference C code into an optimized dynamic dataflow implementation. Our implementation has less than 10% parallelization overhead, near-linear speedup when the number of processors increases from 1 to 8, and achieves the performance of 15 VGA frames per second with a small cluster configuration of 4 processing elements and 64KB of shared memory, and of 30 VGA frames per second with 8 processors and 128KB of shared memory

    Time warp and its applications on a distributed system

    Get PDF

    Validation of multiprocessor systems

    Get PDF
    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested

    Parallel process placement

    Get PDF
    This thesis investigates methods of automatic allocation of processes to available processors in a given network configuration. The research described covers the investigation of various algorithms for optimal process allocation. Among those researched were an algorithm which used a branch and bound technique, an algorithm based on graph theory, and an heuristic algorithm involving cluster analysis. These have been implemented and tested in conjunction with the gathering of performance statistics during program execution, for use in improving subsequent allocations. The system has been implemented on a network of loosely-coupled microcomputers using multi-port serial communication links to simulate a transputer network. The concurrent programming language occam has been implemented, replacing the explicit process allocation constructs with an automatic placement algorithm. This enables the source code to be completely separated from hardware consideration

    State-of-the-art Assessment For Simulated Forces

    Get PDF
    Summary of the review of the state of the art in simulated forces conducted to support the research objectives of Research and Development for Intelligent Simulated Forces
    corecore