81 research outputs found

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Fuzzy Distributed Cooperative Tracking For A Swarm Of Unmanned Aerial Vehicles With Heterogeneous Goals

    Get PDF
    Copyright © 2015 Taylor & Francis This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Systems Science on 29 December 2015, available online: http://www.tandfonline.com/10.1080/00207721.2015.1126380This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of UAVs, modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly feedback gains are synthesised using a Parallel Distributed Compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as Linear Matrix Inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.Engineering and Physical Sciences Research Council (EPSRC

    Nonlinear Control and Estimation with General Performance Criteria

    Get PDF
    This dissertation is concerned with nonlinear systems control and estimation with general performance criteria. The purpose of this work is to propose general design methods to provide systematic and effective design frameworks for nonlinear system control and estimation problems. First, novel State Dependent Linear Matrix Inequality control approach is proposed, which is optimally robust for model uncertainties and resilient against control feedback gain perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. By solving a state dependent linear matrix inequality at each time step, the sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this dissertation unify existing results on nonlinear quadratic regulator, Hinfinity and positive real control. Secondly, an H2-Hinfinity State Dependent Riccati Equation controller is proposed in this dissertation. By solving the generalized State Dependent Riccati Equation, the optimal control solution not only achieves the optimal quadratic regulation performance, but also has the capability of external disturbance reduction. Numerically efficient algorithms are developed to facilitate effective computation. Thirdly, a robust multi-criteria optimal fuzzy control of nonlinear systems is proposed. To improve the optimality and robustness, optimal fuzzy control is proposed for nonlinear systems with general performance criteria. The Takagi-Sugeno fuzzy model is used as an effective tool to control nonlinear systems through fuzzy rule models. General performance criteria have been used to design the controller and the relative weighting matrices of these criteria can be achieved by choosing different coefficient matrices. The optimal control can be achieved by solving the LMI at each time step. Lastly, since any type of controller and observer is subject to actuator failures and sensors failures respectively, novel robust and resilient controllers and estimators are also proposed for nonlinear stochastic systems to address these failure problems. The effectiveness of the proposed control and estimation techniques are demonstrated by simulations of nonlinear systems: the inverted pendulum on a cart and the Lorenz chaotic system, respectively

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Transition Between TS Fuzzy Models and the Associated Convex Hulls by TS Fuzzy Model Transformation

    Get PDF
    One of the primary objectives underlying the extensive 20-year development of the TS Fuzzy model transformation (originally known as TP model transformation) is to establish a framework capable of generating alternative Fuzzy rules for a given TS Fuzzy model, thereby manipulating the associated convex hull to enhance further design outcomes. The existing methods integrated into the TS Fuzzy model transformation offer limited capabilities in deriving only a few types of loose and tight convex hulls. In this article, we propose a radically new approach that enables the derivation of an infinite number of alternative Fuzzy rules and, hence, convex hulls in a systematic and tractable manner. The article encompasses the following key novelties. Firstly, we develop a Fuzzy rule interpolation method, based on the pseudo TS Fuzzy model transformation and the antecedent Fuzzy set rescheduling technique, that leads to a smooth transition between the Fuzzy rules and the corresponding convex hulls. Then, we extend the proposed concept with the antecedent Fuzzy set refinement and reinforcement technique to tackle large-scale problems characterized by a high number of inputs and Fuzzy rules. The paper also includes demonstrative examples to illustrate the theoretical key steps, and concludes with an examination of a real complex engineering problem to showcase the effectiveness and straightforward execution of the proposed convex hull manipulation approach

    Neuro-fuzzy modeling and control

    Full text link

    Generic Online Learning for Partial Visible & Dynamic Environment with Delayed Feedback

    Get PDF
    Reinforcement learning (RL) has been applied to robotics and many other domains which a system must learn in real-time and interact with a dynamic environment. In most studies the state- action space that is the key part of RL is predefined. Integration of RL with deep learning method has however taken a tremendous leap forward to solve novel challenging problems such as mastering a board game of Go. The surrounding environment to the agent may not be fully visible, the environment can change over time, and the feedbacks that agent receives for its actions can have a fluctuating delay. In this paper, we propose a Generic Online Learning (GOL) system for such environments. GOL is based on RL with a hierarchical structure to form abstract features in time and adapt to the optimal solutions. The proposed method has been applied to load balancing in 5G cloud random access networks. Simulation results show that GOL successfully achieves the system objectives of reducing cache-misses and communication load, while incurring only limited system overhead in terms of number of high-level patterns needed. We believe that the proposed GOL architecture is significant for future online learning of dynamic, partially visible environments, and would be very useful for many autonomous control systems

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Novel implementation technique for a wavelet-based broadband signal detection system

    Get PDF
    This thesis reports on the design, simulation and implementation of a novel Implementation for a Wavelet-based Broadband Signal Detection System. There is a strong interest in methods of increasing the resolution of sonar systems for the detection of targets at sea. A novel implementation of a wideband active sonar signal detection system is proposed in this project. In the system the Continuous Wavelet Transform is used for target motion estimation and an Adaptive-Network-based Fuzzy inference System (ANFIS) is adopted to minimize the noise effect on target detection. A local optimum search algorithm is introduced in this project to reduce the computation load of the Continuous Wavelet Transform and make it suitable for practical applications. The proposed system is realized on a Xilinx University Program Virtex-II Pro Development System which contains a Virtex II pro XC2VP30 FPGA chip with 2 powerPC 405 cores. Testing for single target detection and multiple target detection shows the proposed system is able to accurately locate targets under reverberation-limited underwater environment with a Signal-Noise-Ratio of up to -30db, with location error less than 10 meters and velocity estimation error less than 1 knot. In the proposed system the combination of CWT and local optimum search algorithm significantly saves the computation time for CWT and make it more practical to real applications. Also the implementation of ANFIS on the FPGA board indicates in the future a real-time ANFIS operation with VLSI implementation would be possible
    corecore