3,845 research outputs found

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Graph set data mining

    Get PDF
    Graphs are among the most versatile abstract data types in computer science. With the variety comes great adoption in various application fields, such as chemistry, biology, social analysis, logistics, and computer science itself. With the growing capacities of digital storage, the collection of large amounts of data has become the norm in many application fields. Data mining, i.e., the automated extraction of non-trivial patterns from data, is a key step to extract knowledge from these datasets and generate value. This thesis is dedicated to concurrent scalable data mining algorithms beyond traditional notions of efficiency for large-scale datasets of small labeled graphs; more precisely, structural clustering and representative subgraph pattern mining. It is motivated by, but not limited to, the need to analyze molecular libraries of ever-increasing size in the drug discovery process. Structural clustering makes use of graph theoretical concepts, such as (common) subgraph isomorphisms and frequent subgraphs, to model cluster commonalities directly in the application domain. It is considered computationally demanding for non-restricted graph classes and with very few exceptions prior algorithms are only suitable for very small datasets. This thesis discusses the first truly scalable structural clustering algorithm StruClus with linear worst-case complexity. At the same time, StruClus embraces the inherent values of structural clustering algorithms, i.e., interpretable, consistent, and high-quality results. A novel two-fold sampling strategy with stochastic error bounds for frequent subgraph mining is presented. It enables fast extraction of cluster commonalities in the form of common subgraph representative sets. StruClus is the first structural clustering algorithm with a directed selection of structural cluster-representative patterns regarding homogeneity and separation aspects in the high-dimensional subgraph pattern space. Furthermore, a novel concept of cluster homogeneity balancing using dynamically-sized representatives is discussed. The second part of this thesis discusses the representative subgraph pattern mining problem in more general terms. A novel objective function maximizes the number of represented graphs for a cardinality-constrained representative set. It is shown that the problem is a special case of the maximum coverage problem and is NP-hard. Based on the greedy approximation of Nemhauser, Wolsey, and Fisher for submodular set function maximization a novel sampling approach is presented. It mines candidate sets that contain an optimal greedy solution with a probabilistic maximum error. This leads to a constant-time algorithm to generate the candidate sets given a fixed-size sample of the dataset. In combination with a cheap single-pass streaming evaluation of the candidate sets, this enables scalability to datasets with billions of molecules on a single machine. Ultimately, the sampling approach leads to the first distributed subgraph pattern mining algorithm that distributes the pattern space and the dataset graphs at the same time
    corecore