488 research outputs found

    Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals

    Get PDF
    The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counteract the effect of the neurotoxin. Synthetic peptides, the sequences of which correspond to motifs present in the cytoplasmic domain of the synaptic vesicle membrane protein synaptobrevin 1 and 2, prevent the effect of the tetanus toxin light chain. Our results indicate that zinc bound to the zinc binding motif constitutes the active site of the tetanus toxin light chain. Moreover they suggest that cleavage of synaptobrevin by the neurotoxin causes the inhibition of exocytotic release of vasopressin from secretory granules

    Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors

    Get PDF
    Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C). Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin

    SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons

    Get PDF
    Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons

    A novel inhibitor prevents the peripheral neuroparalysis of Botulinum neurotoxins

    Get PDF
    Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their growing number, it is of paramount importance to discover novel inhibitors targeting common steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel inhibitors of botulinum neurotoxins

    Cytotoxicity of Botulinum Neurotoxins Reveals a Direct Role of Syntaxin 1 and SNAP-25 in Neuron Survival

    Get PDF
    Botulinum neurotoxins (BoNT/A-G) are well-known to act by blocking synaptic vesicle exocytosis. Whether BoNTs disrupt additional neuronal functions has not been addressed. Here we report that cleavage of syntaxin 1 (Syx 1) by BoNT/C and cleavage of SNAP-25 by BoNT/E both induce degeneration of cultured rodent and human neurons. Furthermore, although SNAP-25 cleaved by BoNT/A can still support neuron survival, it has reduced capacity to tolerate additional mutations and also fails to pair with syntaxin isoforms other than Syx 1. Syx 1 and SNAP-25 are well-known for mediating synaptic vesicle exocytosis, but we found that neuronal death is due to blockage of plasma membrane recycling processes that share Syx 1/SNAP-25 for exocytosis, independent of blockage of synaptic vesicle exocytosis. These findings reveal neuronal cytotoxicity for a subset of BoNTs and directly link Syx 1/SNAP-25 to neuron survival as the prevalent SNARE proteins mediating multiple fusion events on neuronal plasma membranes

    Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the hippocampal network

    Get PDF
    The closely related synaptic vesicle membrane proteins synaptophysin and synaptoporin are abundant in the hippocampal formation of the adult rat. But the prenatal hippocampal formation contains only synaptophysin, which is first detected at embryonic day 17 (E17) in perikarya and axons of the pyramidal neurons. At E21 synaptophysin immunoreactivity extends into the apical dendrites of these cells and in newly formed terminals contacting these dendrites. The transient presence of synaptophysin in axons and dendrites suggests a functional involvement of synaptophysin in fibre outgrowth of developing pyramidal neurons. Synaptoporin expression parallels the formation of dentate granule cell synaptic contacts with pyramidal neurons: the amount of hippocampal synaptoporin, determined in immunoblots and by synaptoporin immunostaining of developing mossy fibre terminals, increases during the first postnatal week. Moreover, in the adult, synaptoporin is found exclusively in the mossy fibre terminals present in the hilar region of the dentate gyrus and the regio inferior of the cornu ammonis. In contrast, synaptophysin is present in all synaptic fields of the hippocampal formation, including the mossy fibre terminals, where it colocalizes with synaptoporin in the same boutons. Our data indicate that granule neuron terminals differ from all other terminals of the hippocampal formation by the presence of both synaptoporin and synaptophysin. This difference, observed in the earliest synaptic contacts in the postnatal hippocampus and persisting into adult life, suggests distinct functions of synaptoporin in these nerve terminals
    • …
    corecore