43,664 research outputs found

    Symmetry constrained machine learning

    Full text link
    Symmetry, a central concept in understanding the laws of nature, has been used for centuries in physics, mathematics, and chemistry, to help make mathematical models tractable. Yet, despite its power, symmetry has not been used extensively in machine learning, until rather recently. In this article we show a general way to incorporate symmetries into machine learning models. We demonstrate this with a detailed analysis on a rather simple real world machine learning system - a neural network for classifying handwritten digits, lacking bias terms for every neuron. We demonstrate that ignoring symmetries can have dire over-fitting consequences, and that incorporating symmetry into the model reduces over-fitting, while at the same time reducing complexity, ultimately requiring less training data, and taking less time and resources to train

    Noisy regression and classification with continuous multilayer networks

    Full text link
    We investigate zero temperature Gibbs learning for two classes of unrealizable rules which play an important role in practical applications of multilayer neural networks with differentiable activation functions: classification problems and noisy regression problems. Considering one step of replica symmetry breaking, we surprisingly find that for sufficiently large training sets the stable state is replica symmetric even though the target rule is unrealizable. Further, the classification problem is shown to be formally equivalent to the noisy regression problem.Comment: 7 pages, including 2 figure
    • …
    corecore