12,690 research outputs found

    Approximation Schemes for a Unit-Demand Buyer with Independent Items via Symmetries

    Full text link
    We consider a revenue-maximizing seller with nn items facing a single buyer. We introduce the notion of symmetric menu complexity of a mechanism, which counts the number of distinct options the buyer may purchase, up to permutations of the items. Our main result is that a mechanism of quasi-polynomial symmetric menu complexity suffices to guarantee a (1ε)(1-\varepsilon)-approximation when the buyer is unit-demand over independent items, even when the value distribution is unbounded, and that this mechanism can be found in quasi-polynomial time. Our key technical result is a polynomial time, (symmetric) menu-complexity-preserving black-box reduction from achieving a (1ε)(1-\varepsilon)-approximation for unbounded valuations that are subadditive over independent items to achieving a (1O(ε))(1-O(\varepsilon))-approximation when the values are bounded (and still subadditive over independent items). We further apply this reduction to deduce approximation schemes for a suite of valuation classes beyond our main result. Finally, we show that selling separately (which has exponential menu complexity) can be approximated up to a (1ε)(1-\varepsilon) factor with a menu of efficient-linear (f(ε)n)(f(\varepsilon) \cdot n) symmetric menu complexity.Comment: FOCS 201

    Experimental observation of chimera and cluster states in a minimal globally coupled network

    Full text link
    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states

    Factoring the Strong CP Problem

    Full text link
    We present a new mechanism to solve the strong CP problem using N2N\geq2 axions, each dynamically relaxing part of the θˉ\bar\theta parameter. At high energies MΛQCDM\gg\Lambda_{QCD} the SU(3)cSU(3)_{c} group becomes the diagonal subgroup of an SU(3)NSU(3)^{N} gauge group, and the non-perturbative effects in each individual SU(3)SU(3) factor generate a potential for the corresponding axion. The vacuum is naturally aligned to ensure θˉ=0\bar\theta=0 at low energies, and the masses of these axions can be much larger than for the standard QCD axion. This mechanism avoids the introduction of a discrete Z2Z_2 symmetry and associated 'mirror' copies of the SM fermions, and also avoids the introduction and stabilization of new light colored states to modify the running of the QCD gauge coupling found in other heavy axion models. This strengthens the motivation for axion-like particles solving the strong CP problem at points beyond the standard QCD axion curve in the (ma,fa)(m_a, f_a) plane.Comment: 14 pages, 5 figure

    Constant-Competitive Prior-Free Auction with Ordered Bidders

    Full text link
    A central problem in Microeconomics is to design auctions with good revenue properties. In this setting, the bidders' valuations for the items are private knowledge, but they are drawn from publicly known prior distributions. The goal is to find a truthful auction (no bidder can gain in utility by misreporting her valuation) that maximizes the expected revenue. Naturally, the optimal-auction is sensitive to the prior distributions. An intriguing question is to design a truthful auction that is oblivious to these priors, and yet manages to get a constant factor of the optimal revenue. Such auctions are called prior-free. Goldberg et al. presented a constant-approximate prior-free auction when there are identical copies of an item available in unlimited supply, bidders are unit-demand, and their valuations are drawn from i.i.d. distributions. The recent work of Leonardi et al. [STOC 2012] generalized this problem to non i.i.d. bidders, assuming that the auctioneer knows the ordering of their reserve prices. Leonardi et al. proposed a prior-free auction that achieves a O(logn)O(\log^* n) approximation. We improve upon this result, by giving the first prior-free auction with constant approximation guarantee.Comment: The same result has been obtained independently by E. Koutsoupias, S. Leonardi and T. Roughgarde

    Sampling and Representation Complexity of Revenue Maximization

    Full text link
    We consider (approximate) revenue maximization in auctions where the distribution on input valuations is given via "black box" access to samples from the distribution. We observe that the number of samples required -- the sample complexity -- is tightly related to the representation complexity of an approximately revenue-maximizing auction. Our main results are upper bounds and an exponential lower bound on these complexities
    corecore