1,046 research outputs found

    Interaction Grammars

    Get PDF
    Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities express the resource sensitivity of natural languages by modelling the distinction between saturated and unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are constraint systems using the notion of tree description and parsing appears as a process of building tree description models satisfying criteria of saturation and minimality

    Beyond operator-precedence grammars and languages

    Get PDF
    Operator Precedence Languages (OPL) are deterministic context-free and have desirable properties. OPL are parallely parsable, and, when structurally compatible, are closed under Boolean operations, concatenation and star; they include the Input Driven languages. OPL use three relations between two terminal symbols, to assign syntax structure to words. We extend such relations to k-tuples of consecutive symbols, in agreement with strictly locally testable regular languages. For each k, the new corresponding class of Higher-order Operator Precedence languages properly includes the OPL and enjoy many of their properties. OPL are a strict hierarchy based on k, which contains maximal languages

    Robust Processing of Natural Language

    Full text link
    Previous approaches to robustness in natural language processing usually treat deviant input by relaxing grammatical constraints whenever a successful analysis cannot be provided by ``normal'' means. This schema implies, that error detection always comes prior to error handling, a behaviour which hardly can compete with its human model, where many erroneous situations are treated without even noticing them. The paper analyses the necessary preconditions for achieving a higher degree of robustness in natural language processing and suggests a quite different approach based on a procedure for structural disambiguation. It not only offers the possibility to cope with robustness issues in a more natural way but eventually might be suited to accommodate quite different aspects of robust behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro, pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture Notes in Computer Science, Springer 199

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201

    Generative grammars and the computer-aided composition of music

    Get PDF

    Tense and the Logic of Change

    Get PDF
    In this paper it is shown how the DRT (Discourse Representation Theory) treatment of temporal anaphora can be formalized within a version of Montague Semantics that is based on classical type logic

    A Bird’s Eye View of Human Language Evolution

    Get PDF
    Comparative studies of linguistic faculties in animals pose an evolutionary paradox: language involves certain perceptual and motor abilities, but it is not clear that this serves as more than an input–output channel for the externalization of language proper. Strikingly, the capability for auditory–vocal learning is not shared with our closest relatives, the apes, but is present in such remotely related groups as songbirds and marine mammals. There is increasing evidence for behavioral, neural, and genetic similarities between speech acquisition and birdsong learning. At the same time, researchers have applied formal linguistic analysis to the vocalizations of both primates and songbirds. What have all these studies taught us about the evolution of language? Is the comparative study of an apparently species-specific trait like language feasible? We argue that comparative analysis remains an important method for the evolutionary reconstruction and causal analysis of the mechanisms underlying language. On the one hand, common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization, and auditory memory. On the other hand, there has been convergent evolution of the capacity for auditory–vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. However, significant limitations to this comparative analysis remain. While all birdsong may be classified in terms of a particularly simple kind of concatenation system, the regular languages, there is no compelling evidence to date that birdsong matches the characteristic syntactic complexity of human language, arising from the composition of smaller forms like words and phrases into larger ones

    Developing a Deep Grammar of Indonesian within the ParGram Framework: Theoretical and Implementational Challenges

    Get PDF
    This paper discusses theoretical and implementational challenges in developing a deep grammar of Indonesian (IndoGram) within the lexical-functional grammar (LFG)-based Parallel Grammar (ParGram) framework, using the Xerox Linguistic Environment (XLE) pa

    Developing a Deep Grammar of Indonesian within the ParGram Framework: Theoretical and Implementational Challenges

    Get PDF
    corecore