185 research outputs found

    Symmetric tensor decomposition

    Get PDF
    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with these Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the rank

    Symmetric Tensor Decomposition by an Iterative Eigendecomposition Algorithm

    Get PDF
    We present an iterative algorithm, called the symmetric tensor eigen-rank-one iterative decomposition (STEROID), for decomposing a symmetric tensor into a real linear combination of symmetric rank-1 unit-norm outer factors using only eigendecompositions and least-squares fitting. Originally designed for a symmetric tensor with an order being a power of two, STEROID is shown to be applicable to any order through an innovative tensor embedding technique. Numerical examples demonstrate the high efficiency and accuracy of the proposed scheme even for large scale problems. Furthermore, we show how STEROID readily solves a problem in nonlinear block-structured system identification and nonlinear state-space identification

    Generating Polynomials and Symmetric Tensor Decompositions

    Full text link
    This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.Comment: 35 page

    Symmetric Tensor Decomposition Description of Fermionic Many-Body Wavefunctions

    Full text link
    The configuration interaction (CI) is a versatile wavefunction theory for interacting fermions but it involves an extremely long CI series. Using a symmetric tensor decomposition (STD) method, we convert the CI series into a compact and numerically tractable form. The converted series encompasses the Hartree-Fock state in the first term and rapidly converges to the full-CI state, as numerically tested using small molecules. Provided that the length of the STD-CI series grows only moderately with the increasing complexity of the system, the new method will serve as one of the alternative variational methods to achieve full-CI with enhanced practicability.Comment: 10 pages, 6 figure

    Symmetric tensor decomposition

    Get PDF
    International audienceWe present an algorithm for decomposing a symmetric tensor of dimension n and order d as a sum of of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for symmetric tensors of dimension 2. We exploit the known fact that every symmetric tensor is equivalently represented by a homogeneous polynomial in n variables of total degree d. Thus the decomposition corresponds to a sum of powers of linear forms. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the tensor rank

    Numerical Optimization for Symmetric Tensor Decomposition

    Full text link
    We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued vectors. Algebraic methods exist for computing complex-valued decompositions of symmetric tensors, but here we focus on real-valued decompositions, both unconstrained and nonnegative, for problems with low-rank structure. We discuss when solutions exist and how to formulate the mathematical program. Numerical results show the properties of the proposed formulations (including one that ignores symmetry) on a set of test problems and illustrate that these straightforward formulations can be effective even though the problem is nonconvex

    Skew-Symmetric Tensor Decomposition

    Get PDF
    International audienceWe introduce the ``skew apolarity lemma" and we use it to give algorithms for the skew-symmetric rank and the decomposition of tensors in {dVC\bigwedge^dV_{\mathbb{C}} with d3d\leq 3 and dimVC8\dim V_{\mathbb{C}} \leq 8}. New algorithms to compute the rank and a minimal decomposition of a tri-tensor are also presented
    corecore