21 research outputs found

    Ultrametric spaces of branches on arborescent singularities

    Get PDF
    Let SS be a normal complex analytic surface singularity. We say that SS is arborescent if the dual graph of any resolution of it is a tree. Whenever A,BA,B are distinct branches on SS, we denote by A⋅BA \cdot B their intersection number in the sense of Mumford. If LL is a fixed branch, we define UL(A,B)=(L⋅A)(L⋅B)(A⋅B)−1U_L(A,B)= (L \cdot A)(L \cdot B)(A \cdot B)^{-1} when A≠BA \neq B and UL(A,A)=0U_L(A,A) =0 otherwise. We generalize a theorem of P{\l}oski concerning smooth germs of surfaces, by proving that whenever SS is arborescent, then ULU_L is an ultrametric on the set of branches of SS different from LL. We compute the maximum of ULU_L, which gives an analog of a theorem of Teissier. We show that ULU_L encodes topological information about the structure of the embedded resolutions of any finite set of branches. This generalizes a theorem of Favre and Jonsson concerning the case when both SS and LL are smooth. We generalize also from smooth germs to arbitrary arborescent ones their valuative interpretation of the dual trees of the resolutions of SS. Our proofs are based in an essential way on a determinantal identity of Eisenbud and Neumann.Comment: 37 pages, 16 figures. Compared to the first version on Arxiv, il has a new section 4.3, accompanied by 2 new figures. Several passages were clarified and the typos discovered in the meantime were correcte

    Subject Index Volumes 1–200

    Get PDF
    corecore