147 research outputs found

    A SHORT INTRODUCTION TO EXPERT SYSTEMS

    Get PDF
    Information Systems Working Papers Serie

    A Novel SAT-Based Approach to the Task Graph Cost-Optimal Scheduling Problem

    Get PDF
    The Task Graph Cost-Optimal Scheduling Problem consists in scheduling a certain number of interdependent tasks onto a set of heterogeneous processors (characterized by idle and running rates per time unit), minimizing the cost of the entire process. This paper provides a novel formulation for this scheduling puzzle, in which an optimal solution is computed through a sequence of Binate Covering Problems, hinged within a Bounded Model Checking paradigm. In this approach, each covering instance, providing a min-cost trace for a given schedule depth, can be solved with several strategies, resorting to Minimum-Cost Satisfiability solvers or Pseudo-Boolean Optimization tools. Unfortunately, all direct resolution methods show very low efficiency and scalability. As a consequence, we introduce a specialized method to solve the same sequence of problems, based on a traditional all-solution SAT solver. This approach follows the "circuit cofactoring" strategy, as it exploits a powerful technique to capture a large set of solutions for any new SAT counter-example. The overall method is completed with a branch-and-bound heuristic which evaluates lower and upper bounds of the schedule length, to reduce the state space that has to be visited. Our results show that the proposed strategy significantly improves the blind binate covering schema, and it outperforms general purpose state-of-the-art tool

    A SHORT INTRODUCTION TO EXPERT SYSTEMS

    Get PDF
    Information Systems Working Papers Serie

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Fundamental components of deep learning : a category-theoretic approach

    Get PDF
    Deep learning, despite its remarkable achievements, is still a young field. Like the early stages of many scientific disciplines, it is marked by the discovery of new phenomena, ad-hoc design decisions, and the lack of a uniform and compositional mathematical foundation. From the intricacies of the implementation of backpropagation, through a growing zoo of neural network architectures, to the new and poorly understood phenomena such as double descent, scaling laws or in-context learning, there are few unifying principles in deep learning. This thesis develops a novel mathematical foundation for deep learning based on the language of category theory. We develop a new framework that is a) end-to-end, b) uniform, and c) not merely descriptive, but prescriptive, meaning it is amenable to direct implementation in programming languages with sufficient features. We also systematise many existing approaches, placing many existing constructions and concepts from the literature under the same umbrella. In Part I, the theory, we identify and model two main properties of deep learning systems: they are parametric and bidirectional. We expand on the previously defined construction of categories and Para to study the former, and define weighted optics to study the latter. Combining them yields parametric weighted optics, a categorical model of artificial neural networks, and more: constructions in Part I have close ties to many other kinds of bidirectional processes such as Bayesian updating, value iteration, and game theory. Part II justifies the abstractions from Part I, applying them to model backpropagation, architectures, and supervised learning. We provide a lens-theoretic axiomatisation of differentiation, covering not just smooth spaces, but discrete settings of Boolean circuits as well. We survey existing, and develop new categorical models of neural network architectures. We formalise the notion of optimisers and lastly, combine all the existing concepts together, providing a uniform and compositional framework for supervised learning.Deep learning, despite its remarkable achievements, is still a young field. Like the early stages of many scientific disciplines, it is marked by the discovery of new phenomena, ad-hoc design decisions, and the lack of a uniform and compositional mathematical foundation. From the intricacies of the implementation of backpropagation, through a growing zoo of neural network architectures, to the new and poorly understood phenomena such as double descent, scaling laws or in-context learning, there are few unifying principles in deep learning. This thesis develops a novel mathematical foundation for deep learning based on the language of category theory. We develop a new framework that is a) end-to-end, b) uniform, and c) not merely descriptive, but prescriptive, meaning it is amenable to direct implementation in programming languages with sufficient features. We also systematise many existing approaches, placing many existing constructions and concepts from the literature under the same umbrella. In Part I, the theory, we identify and model two main properties of deep learning systems: they are parametric and bidirectional. We expand on the previously defined construction of categories and Para to study the former, and define weighted optics to study the latter. Combining them yields parametric weighted optics, a categorical model of artificial neural networks, and more: constructions in Part I have close ties to many other kinds of bidirectional processes such as Bayesian updating, value iteration, and game theory. Part II justifies the abstractions from Part I, applying them to model backpropagation, architectures, and supervised learning. We provide a lens-theoretic axiomatisation of differentiation, covering not just smooth spaces, but discrete settings of Boolean circuits as well. We survey existing, and develop new categorical models of neural network architectures. We formalise the notion of optimisers and lastly, combine all the existing concepts together, providing a uniform and compositional framework for supervised learning

    NASA Tech Briefs, November 1993

    Get PDF
    Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Generalized asset integrity games

    Get PDF
    Generalized assets represent a class of multi-scale adaptive state-transition systems with domain-oblivious performance criteria. The governance of such assets must proceed without exact specifications, objectives, or constraints. Decision making must rapidly scale in the presence of uncertainty, complexity, and intelligent adversaries. This thesis formulates an architecture for generalized asset planning. Assets are modelled as dynamical graph structures which admit topological performance indicators, such as dependability, resilience, and efficiency. These metrics are used to construct robust model configurations. A normalized compression distance (NCD) is computed between a given active/live asset model and a reference configuration to produce an integrity score. The utility derived from the asset is monotonically proportional to this integrity score, which represents the proximity to ideal conditions. The present work considers the situation between an asset manager and an intelligent adversary, who act within a stochastic environment to control the integrity state of the asset. A generalized asset integrity game engine (GAIGE) is developed, which implements anytime algorithms to solve a stochastically perturbed two-player zero-sum game. The resulting planning strategies seek to stabilize deviations from minimax trajectories of the integrity score. Results demonstrate the performance and scalability of the GAIGE. This approach represents a first-step towards domain-oblivious architectures for complex asset governance and anytime planning

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore