3,588 research outputs found

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Computer Algebra Solving of First Order ODEs Using Symmetry Methods

    Get PDF
    A set of Maple V R.3/4 computer algebra routines for the analytical solving of 1st. order ODEs, using Lie group symmetry methods, is presented. The set of commands includes a 1st. order ODE-solver and routines for, among other things: the explicit determination of the coefficients of the infinitesimal symmetry generator; the construction of the most general invariant 1st. order ODE under given symmetries; the determination of the canonical coordinates of the underlying invariant group; and the testing of the returned results.Comment: 14 pages, LaTeX, submitted to Computer Physics Communications. Soft-package (On-Line Help) and sample MapleV session available at: http://dft.if.uerj.br/symbcomp.htm or ftp://dft.if.uerj.br/pdetool

    Symbolic Software for the Painleve Test of Nonlinear Ordinary and Partial Differential Equations

    Full text link
    The automation of the traditional Painleve test in Mathematica is discussed. The package PainleveTest.m allows for the testing of polynomial systems of ordinary and partial differential equations which may be parameterized by arbitrary functions (or constants). Except where limited by memory, there is no restriction on the number of independent or dependent variables. The package is quite robust in determining all the possible dominant behaviors of the Laurent series solutions of the differential equation. The omission of valid dominant behaviors is a common problem in many implementations of the Painleve test, and these omissions often lead to erroneous results. Finally, our package is compared with the other available implementations of the Painleve test.Comment: Published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/), vol. 13(1), pp. 90-110 (Feb. 2006). The software can be downloaded at either http://www.douglasbaldwin.com or http://www.mines.edu/fs_home/wherema

    Finding Liouvillian first integrals of rational ODEs of any order in finite terms

    Get PDF
    It is known, due to Mordukhai-Boltovski, Ritt, Prelle, Singer, Christopher and others, that if a given rational ODE has a Liouvillian first integral then the corresponding integrating factor of the ODE must be of a very special form of a product of powers and exponents of irreducible polynomials. These results lead to a partial algorithm for finding Liouvillian first integrals. However, there are two main complications on the way to obtaining polynomials in the integrating factor form. First of all, one has to find an upper bound for the degrees of the polynomials in the product above, an unsolved problem, and then the set of coefficients for each of the polynomials by the computationally-intensive method of undetermined parameters. As a result, this approach was implemented in CAS only for first and relatively simple second order ODEs. We propose an algebraic method for finding polynomials of the integrating factors for rational ODEs of any order, based on examination of the resultants of the polynomials in the numerator and the denominator of the right-hand side of such equation. If both the numerator and the denominator of the right-hand side of such ODE are not constants, the method can determine in finite terms an explicit expression of an integrating factor if the ODE permits integrating factors of the above mentioned form and then the Liouvillian first integral. The tests of this procedure based on the proposed method, implemented in Maple in the case of rational integrating factors, confirm the consistence and efficiency of the method.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA
    corecore