8,271 research outputs found

    Counterfactual Causality from First Principles?

    Full text link
    In this position paper we discuss three main shortcomings of existing approaches to counterfactual causality from the computer science perspective, and sketch lines of work to try and overcome these issues: (1) causality definitions should be driven by a set of precisely specified requirements rather than specific examples; (2) causality frameworks should support system dynamics; (3) causality analysis should have a well-understood behavior in presence of abstraction.Comment: In Proceedings CREST 2017, arXiv:1710.0277

    Causality and Temporal Dependencies in the Design of Fault Management Systems

    Get PDF
    Reasoning about causes and effects naturally arises in the engineering of safety-critical systems. A classical example is Fault Tree Analysis, a deductive technique used for system safety assessment, whereby an undesired state is reduced to the set of its immediate causes. The design of fault management systems also requires reasoning on causality relationships. In particular, a fail-operational system needs to ensure timely detection and identification of faults, i.e. recognize the occurrence of run-time faults through their observable effects on the system. Even more complex scenarios arise when multiple faults are involved and may interact in subtle ways. In this work, we propose a formal approach to fault management for complex systems. We first introduce the notions of fault tree and minimal cut sets. We then present a formal framework for the specification and analysis of diagnosability, and for the design of fault detection and identification (FDI) components. Finally, we review recent advances in fault propagation analysis, based on the Timed Failure Propagation Graphs (TFPG) formalism.Comment: In Proceedings CREST 2017, arXiv:1710.0277

    Generating Diagnoses for Probabilistic Model Checking Using Causality

    Get PDF
    One of the most major advantages of Model checking over other formal methods of verification, its ability to generate an error trace in case of a specification falsified in the model. We call this trace a counterexample. However, understanding the counterexample is not that easy task, because model checker generates usually multiple counterexamples of long length, what makes the analysis of counterexample time-consuming as well as costly task. Therefore, counterexamples should be small and as indicative as possible to be understood. In probabilistic model checking (PMC) counterexample generation has a quantitative aspect.  The counterexample in PMC is a set of paths in which a path formula holds, and their accumulative probability mass violates the probability bound. In this paper, we address the complementary task of counterexample generation which is the counterexample diagnosis in PMC. We propose an aided-diagnostic method for probabilistic counterexamples based on the notion of causality and responsibility. Given a counterexample for a Probabilistic CTL (PCTL) formula that doesn’t hold over Discreet-Time-Markov-Chain (DTMC) model, this method guides the user to the most responsible causes in the counterexample.</p

    Trend-based analysis of a population model of the AKAP scaffold protein

    Get PDF
    We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system

    Partial Orders for Efficient BMC of Concurrent Software

    Get PDF
    This version previously deposited at arXiv:1301.1629v1 [cs.LO]The vast number of interleavings that a concurrent program can have is typically identified as the root cause of the difficulty of automatic analysis of concurrent software. Weak memory is generally believed to make this problem even harder. We address both issues by modelling programs' executions with partial orders rather than the interleaving semantics (SC). We implemented a software analysis tool based on these ideas. It scales to programs of sufficient size to achieve first-time formal verification of non-trivial concurrent systems code over a wide range of models, including SC, Intel x86 and IBM Power

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201
    • …
    corecore