777 research outputs found

    Symbol Synchronization for Diffusive Molecular Communication Systems

    Full text link
    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop a symbol synchronization framework for molecular communication (MC) systems where we consider some practical challenges which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g. modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we propose to employ two types of molecules, one for synchronization and one for data transmission. We derive the optimal maximum likelihood (ML) symbol synchronization scheme as a performance upper bound. Since ML synchronization entails high complexity, we also propose two low-complexity synchronization schemes, namely a peak observation-based scheme and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Our simulation results reveal the effectiveness of the proposed synchronization~schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of symbol synchronization.Comment: This paper has been accepted for presentation at IEEE International Conference on Communications (ICC) 201

    Diffusive Molecular Communications with Reactive Signaling

    Full text link
    This paper focuses on molecular communication (MC) systems where the signaling molecules may participate in a reversible bimolecular reaction in the channel. The motivation for studying these MC systems is that they can realize the concept of constructive and destructive signal superposition, which leads to favorable properties such as inter-symbol interference (ISI) reduction and avoiding environmental contamination due to continuous release of molecules into the channel. This work first derives the maximum likelihood (ML) detector for a binary MC system with reactive signaling molecules under the assumption that the detector has perfect knowledge of the ISI. The performance of this genie-aided ML detector yields an upper bound on the performance of any practical detector. In addition, two suboptimal detectors of different complexity are proposed. The proposed ML detector as well as one of the suboptimal detectors require the channel response (CR) of the considered MC system. Moreover, the CR is needed for the performance evaluation of all proposed detectors. However, analyzing MC with reactive signaling is challenging since the underlying partial differential equations that describe the reaction-diffusion mechanism are coupled and non-linear. Therefore, an algorithm is developed in this paper for efficient computation of the CR to any arbitrary transmit symbol sequence. The accuracy of this algorithm is validated via particle-based simulation. Simulation results using the developed CR algorithm show that the performance of the proposed suboptimal detectors can approach that of the genie- aided ML detector. Moreover, these results show that MC systems with reactive signaling have superior performance relative to those with non-reactive signaling due to the reduction of ISI enabled by the chemical reactions.Comment: This paper has been submitted to IEEE International Conference on Communications (ICC) 201

    Diffusive Mobile Molecular Communications Over Time-Variant Channels

    Full text link
    This letter introduces a formalism for modeling time-variant channels for diffusive molecular communication systems. In particular, we consider a fluid environment where one transmitter nano-machine and one receiver nano-machine are subjected to Brownian motion in addition to the diffusive motion of the information molecules used for communication. Due to the stochastic movements of the transmitter and receiver nano-machines, the statistics of the channel impulse response change over time. We show that the time-variant behaviour of the channel can be accurately captured by appropriately modifying the diffusion coefficient of the information molecules. Furthermore, we derive an analytical expression for evaluation of the expected error probability of a simple detector for the considered system. The accuracy of the proposed analytical expression is verified via particle-based simulation of the Brownian motion.Comment: 4 pages, 3 figures, 1 table. Accepted for publication in IEEE Communications Letters (Author's comment: Manuscript submitted Jan. 19, 2017; revised Feb. 20, 2017; accepted Feb. 22, 2017
    • …
    corecore