2 research outputs found

    Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u

    Get PDF
    This paper presents the kinematic analysis of the SCORBOT-ER 4u robot arm using a Multi-Layered Feed-Forward (MLFF) Neural Network. The SCORBOT-ER 4u is a 5-DOF vertical articulated educational robot with revolute joints. The Denavit-Hartenberg and Geometrical methods are the forward kinematic algorithms used to generate data and train the neural network. The learning of forward-inverse mapping enables the inverse kinematic solution to be found. The algorithm is tested on hardware (SCORBOT-ER 4u) and reliable results are obtained. The modeling and simulations are done using MATLAB 8.0 software

    Switching strategy for Direct Model Predictive Control in power converter and drive applications with high switching frequency

    No full text
    corecore