5 research outputs found

    Switching Reconstruction of Digraphs

    Get PDF
    Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known non-reconstructible oriented graphs have 8 vertices, it is natural to ask whether there are any larger non-reconstructible graphs. In this paper we continue the investigation of this question. We find that there are exactly 44 non-reconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching-stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original

    Parity of Sets of Mutually Orthogonal Latin Squares

    Full text link
    Every Latin square has three attributes that can be even or odd, but any two of these attributes determines the third. Hence the parity of a Latin square has an information content of 2 bits. We extend the definition of parity from Latin squares to sets of mutually orthogonal Latin squares (MOLS) and the corresponding orthogonal arrays (OA). Suppose the parity of an OA(k,n)\mathrm{OA}(k,n) has an information content of dim(k,n)\dim(k,n) bits. We show that dim(k,n)(k2)1\dim(k,n) \leq {k \choose 2}-1. For the case corresponding to projective planes we prove a tighter bound, namely dim(n+1,n)(n2)\dim(n+1,n) \leq {n \choose 2} when nn is odd and dim(n+1,n)(n2)1\dim(n+1,n) \leq {n \choose 2}-1 when nn is even. Using the existence of MOLS with subMOLS, we prove that if dim(k,n)=(k2)1\dim(k,n)={k \choose 2}-1 then dim(k,N)=(k2)1\dim(k,N) = {k \choose 2}-1 for all sufficiently large NN. Let the ensemble of an OA\mathrm{OA} be the set of Latin squares derived by interpreting any three columns of the OA as a Latin square. We demonstrate many restrictions on the number of Latin squares of each parity that the ensemble of an OA(k,n)\mathrm{OA}(k,n) can contain. These restrictions depend on nmod4n\mod4 and give some insight as to why it is harder to build projective planes of order n2mod4n \not= 2\mod4 than for n2mod4n \not= 2\mod4. For example, we prove that when n2mod4n \not= 2\mod 4 it is impossible to build an OA(n+1,n)\mathrm{OA}(n+1,n) for which all Latin squares in the ensemble are isotopic (equivalent to each other up to permutation of the rows, columns and symbols)

    Switching Reconstruction of Digraphs

    No full text
    Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known nonreconstructible oriented graphs have eight vertices, it is natural to ask whether there are any larger nonreconstructible graphs. In this article, we continue the investigation of this question. We find that there are exactly 44 nonreconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching-stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original.Australian Research Council; contract grant number: DP1093320; contract grant sponsor: Fonds National de la Recherche, Luxembourg, co-funded under the Marie Curie Actions of the European Commission; contract grant number: FP7-COFUND

    Switching reconstruction of digraphs

    No full text
    corecore