338 research outputs found

    Filter Design for Positive T-S Fuzzy Continuous-Time Systems with Time Delay Using Piecewise-Linear Membership Functions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This work focuses on the filtering problem and stability analysis for positive Takagi-Sugeno (T-S) fuzzy systems with time delay under L1-induced performance. Due to the importance of estimation of system states but the few filter design results on positive nonlinear systems, it is an attractive and meaningful topic well worth studying. In order to fully exploit and take advantage of the positivity of positive T-S fuzzy systems, many commonly used methods, for instance free-weighting matrix approach and similarity transformation are probably not suitable for positive systems. To address the hard-nut-to-crack problem, an auxiliary variable is introduced so that the augmentation approach can be employed to carry out the positivity and stability analysis of filtering error systems. In addition, another obstacle that cannot be ignored is the existence of non-convex terms in the stability and positivity conditions. For getting around this barrier, some iterative linear matrix inequality (ILMI) algorithms have been proposed in the literature. However, considering the weakness that these methods cannot guarantee the convergence to a numerical solution and the iterative process is exhaustive, we present an effective matrix decoupling method to convert the nonconvex conditions into convex ones in this paper. Furthermore, a linear co-positive Lyapunov function which incorporates the positivity of system states and time delay at the same time is chosen so that the positivity characteristic of filtering error systems can be captured further. However, because of plenty of valuable information of membership functions (MFs) being ignored, hence, the obtained results are conservative. For the sake of relaxing the conservativeness, the advanced piecewise-linear membership functions (PLMFs) approximate method is utilized to facilitate the stability and positivity analysis. Therefore, the relaxed stability and positivity conditions which are cast as sum of squares (SOS) are obtained and can be solved numerically. Finally, the effectiveness of the designed fuzzy filtering strategy with satisfying L1-induced performance are demonstrated by a simulation example

    A Polynomial Membership Function Approach for Stability Analysis of Fuzzy Systems

    Get PDF

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
    corecore