48,250 research outputs found
The Influence of Swirl Brakes on the Rotordynamic Forces Generated by Discharge-to-Suction Leakage Flows in Centrifugal Pumps
Increasing interest has been give to swirl brakes as a means of reducing destabilizing rotordynamic forces due to leakage flows in new high speed rocket turbopumps. Although swirl brakes have been used successfully in practice (such as with the Space Shuttle HPOTP), no experimental test until now have been performed to demonstrate their beneficial effect over a range of leakage flow rates. The present study investigates the effect of swirl brakes on rotordynamic forces generated by discharge-to-suction leakage flows in the annulus of shrouded centrifugal pumps over a range of subsynchronous whirl ratios and various leakage flow rates. In addition, the effectiveness of swirl brakes in the presence of leakage inlet (pump discharge) swirl is also demonstrated. The experimental data demonstrates that with the addition of swirl brakes a significant reduction in the destabilizing tangential force for lower flow rates is achieved. At higher flow rates, the brakes are detrimental. In the presence of leakage inlet swirl, brakes were effective over all leakage flow rates tested in reducing the range of whirl frequency ratio for which the tangential force is destabilizing
On vortex/wave interactions. Part 2. Originating from axisymmetric flow with swirl
Following the study in Part 1 of cross-flow and other non-symmetric effects on vortex/wave interactions in boundary layers, the present Part 2 applies the ideas of Part 1 and related works to an incident axisymmetric flow supplemented by a small swirl or azimuthal velocity. This is with a view to possibly increasing understanding of vortex breakdown. The wave components involved are predominantly inviscid Rayleigh-like ones. The presence of the swirl leads to extra features and complications associated mainly with extra logarithmic contributions but for the dominant interactions essentially the same equations as in Part 1 are found. These dominant nonlinear interactions must be based on azimuthal wavenumbers of +/-1 in the case of the Squire jet with swirl. In contrast to Part 1, which consisted mainly of an analysis of the quasi-bounded solutions, a representative set of numerical solutions of the full integro-differential amplitude equations is presented, for realistic axial and swirl velocity profiles. The work points also to the influence of further increases in the incident swirl
Analytical and experimental investigation of flow fields of annular jets with and without swirling flow
Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl
Effect of Swirl on Rotordynamic Forces Caused by Front Shroud Pump Leakage
Unsteady forces generated by fluid flow through the impeller shroud leakage path of a centrifugal pump were investigated. The effect of leakage path inlet swirl (pump discharge swirl) on the rotordynamic forces was re-examined. It was observed that increasing the inlet swirl is destabilizing both for normal and tangential rotordynamic forces. Attempts to reduce the swirl within the leakage path using ribs and grooves as swirl brakes showed benefits only at low leakage flow rate
A deformable microswimmer in a swirl: capturing and scattering dynamics
Inspired by the classical Kepler and Rutherford problem, we investigate an
analogous set-up in the context of active microswimmers: the behavior of a
deformable microswimmer in a swirl flow. First we identify new steady bound
states in the swirl flow and analyze their stability. Second we study the
dynamics of a self-propelled swimmer heading towards the vortex center, and we
observe the subsequent capturing and scattering dynamics. We distinguish
between two major types of swimmers, those that tend to elongate
perpendicularly to the propulsion direction and those that pursue a parallel
elongation. While the first ones can get caught by the swirl, the second ones
were always observed to be scattered, which proposes a promising escape
strategy. This offers a route to design artificial microswimmers that show the
desired behavior in complicated flow fields. It should be straightforward to
verify our results in a corresponding quasi-two-dimensional experiment using
self-propelled droplets on water surfaces.Comment: 13 pages, 8 figure
Influence of disk leakage path on labyrinth seal inlet swirl ratio
The results of numerous investigators have shown the importance of labyrinth seal inlet swirl on the calculated dynamic stiffness of labyrinth seals. These results have not included any calculation of inlet leakage swirl as a function of geometry and sealing conditions of the given seal. This paper outlines a method of calculating the inlet swirl at a given seal by introducing a radial chamber to predict the gas swirl as it goes from the stage tip down to the seal location. For a centrifugal compressor, this amounts to including the flow path from the impeller discharge, down the back of the disk or front of the cover, then into the shaft seal or eye packing, respectively. The solution includes the friction factors of both the disk and stationary wall with account for mass flow rate and calculation of radial pressure gradients by a free vortex solution. The results of various configurations are discussed and comparisons made to other published results of disk swirl
An experimental comparison of nonswirling and swirling flow in a circular-to-rectangular transition duct
Circular-to-rectangular transition ducts are used as exhaust system components of aircraft with rectangular exhaust nozzles. Often, the incoming flow of these transition ducts includes a swirling velocity component remaining from the gas turbine engine. Previous transition duct studies have either not included inlet swirl or when inlet swirl was considered, only overall performance parameters were evaluated. Circular-to-rectangular transition duct flows with and without inlet swirl were explored in order to understand the effect of inlet swirl on the transition duct flow field and to provide detailed duct flow data for comparison with numerical code predictions. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Coefficients based on velocities and total and static pressures measured incross stream planes at four axial locations within the transition duct, along with surface static pressure measurements and surface oil film visualization, are presented for both nonswirling and swirling incoming flow. In both cases the inlet centerline Mach number was 0.35. The Reynolds number based on the inlet centerline velocity and duct inlet diameter was 1,547,000 for nonswirling and 1,366,000 for swirling flow. The maximum swirl angle was 15.6 deg. Two pair of counter-rotating side wall vortices appeared in the duct flow without inlet swirl. These vortices were absent in the swirling incoming flow cases
Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets
Copyright © 2009 American Institute of Physics.Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier–Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.EPSR
Flow process in combustors
Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work
- …
