3,122 research outputs found

    Toxic effect of Raphia vinifera on fish leech (Piscicola geometra)

    Get PDF
    This study examines acute toxicity of Raphia vinifera on fish leech, Piscicola geometra. The leeches with a mean total length of (TL) 4.2+1.0cm were exposed to various concentrations of both crude powdered and ethanolic extracts of the botanical. Median lethal concentration (LC50) was determined with static-renewal tests using logarithmic and arithmetic graphic methods. The LC50 (for 96 hours of crude powdered (aqueous) extracts of the botanical on Piscicola geometra was 1.10 ppm arithmetically and 1.14ppm logarithmically. The 95% confidence limits was 0.10ppm arithmetically and 0.12ppm logarithmically. The LC50 of ethanolic extract of the poison at 96-h was 0.5ppm arithmetically and 0.48ppm logarithmically. The 95% confidence limits were less than 0.10ppm. The use of extracts of R. vinifera in the control of leeches in fish ponds is discusse

    Toxicity of linear alkylbenene sulphonate (LAS) detergent, to Clarias gariepinus fingerlings

    Get PDF
    The acute toxicity of Linear Alkylbenzene Sulphonate (LAS) detergent to Clarias gariepinus fingerlings was investigated using static bioassays and continous aeration over a period of 96h. The 96h LC sub(50) was determined as 24.00mgL super(-1). During the exposure period, the test fish exhibited several behavioural changes before death such as restlessness, rapid swimming, loss of balance, respiratory distress and haemorrhaging of gill filaments amongst others. Opercula ventilation rate as well as visual examination of dead fish indicates lethal effects of the detergent on the fish. Water quality examination showed increase in pH from 6.55 to the alkaline, death point of 10.55. There was also a remarkabel rise of alkalinity from 20.00mgL super(-1) to 52.50mgL super(-1

    Life at high Deborah number

    Full text link
    In many biological systems, microorganisms swim through complex polymeric fluids, and usually deform the medium at a rate faster than the inverse fluid relaxation time. We address the basic properties of such life at high Deborah number analytically by considering the small-amplitude swimming of a body in an arbitrary complex fluid. Using asymptotic analysis and differential geometry, we show that for a given swimming gait, the time-averaged leading-order swimming kinematics of the body can be expressed as an integral equation on the solution to a series of simpler Newtonian problems. We then use our results to demonstrate that Purcell's scallop theorem, which states that time-reversible body motion cannot be used for locomotion in a Newtonian fluid, breaks down in polymeric fluid environments

    Costs of Chronic Waterborne Zinc Exposure and the Consequences of Zinc Acclimation on the Gill/Zinc Interactions of Rainbow Trout in Hard and Soft Water

    Get PDF
    Juvenile rainbow trout were exposed to zinc in both moderately hard water (hardness 5 120 mg CaCO3/L, pH = 8.0, Zn = 150 μg/L or 450 μg/L) and soft water (hardness = 20 mg CaCO3/L, pH = 7.2, Zn = 50 μg/L or 120 μg/L) for 30 d. Only the 450 mg/L zinc–exposed fish experienced significant mortality (24% in the first 2 d). Zinc exposure caused no effect on growth rate, but growth affected tissue zinc levels. Whole body zinc levels were elevated, but gills and liver showed no consistent increases relative to controls over the 30-d. Therefore, tissue zinc residues were not a good indicator of chronic zinc exposure. After the 30-d exposure, physiological function tests were performed. Zinc was 5.4 times more toxic in soft water (control 96 h LC50s in hard and soft water were 869 μg/L and 162 μg/L, respectively). All zinc-exposed trout had acclimated to the metal, as seen by an increase in the LC50 of 2.2 to 3.9 times over that seen in control fish. Physiological costs related to acclimation appeared to be few. Zinc exposure had no effect on whole body Ca2+ or Na+ levels, on resting or routine metabolic rates, or on fixed velocity sprint performance. However, critical swimming speed (UCrit) was significantly reduced in zinc-exposed fish, an effect that persisted in zinc-free water. Using radioisotopic techniques to distinguish new zinc incorporation, the gills were found to possess two zinc pools: a fast turnover pool (T1/2 = 3–4 h) and a slow turnover pool (T1/2 = days to months). The fast pool was much larger in soft water than in hard water, but at most it accounted for \u3c3.5% of the zinc content of the gills. The size of the slow pool was unknown, but its loading rate was faster in soft water. Chronic zinc exposure was found to increase the size of the fast pool and to increase the loading rate of the slow pool
    • …
    corecore