2 research outputs found

    Static and expanding grid coverage with ant robots: Complexity results

    Get PDF
    AbstractIn this paper we study the strengths and limitations of collaborative teams of simple agents. In particular, we discuss the efficient use of “ant robots” for covering a connected region on the Z2 grid, whose area is unknown in advance, and which expands at a given rate, where n is the initial size of the connected region. We show that regardless of the algorithm used, and the robots’ hardware and software specifications, the minimal number of robots required in order for such a coverage to be possible is Ω(n). In addition, we show that when the region expands at a sufficiently slow rate, a team of Θ(n) robots could cover it in at most O(n2lnn) time. This completion time can even be achieved by myopic robots, with no ability to directly communicate with each other, and where each robot is equipped with a memory of size O(1) bits w.r.t. the size of the region (therefore, the robots cannot maintain maps of the terrain, nor plan complete paths). Regarding the coverage of non-expanding regions in the grid, we improve the current best known result of O(n2) by demonstrating an algorithm that guarantees such a coverage with completion time of O(1kn1.5+n) in the worst case, and faster for shapes of perimeter length which is shorter than O(n)

    Swarm-inspired solution strategy for the search problem of unmanned aerial vehicles

    Get PDF
    Learning from the emergent behaviour of social insects, this research studies the influences of environment to collective problem-solving of insect behaviour and distributed intelligent systems. Literature research has been conducted to understand the emergent paradigms of social insects, and to investigate current research and development of distributed intelligent systems. On the basis of the literature investigation, the environment is considered to have significant impact on the effectiveness and efficiency of collective problem-solving. A framework of collective problem-solving is developed in an interdisciplinary context to describe the influences of the environment to insect behaviour and problem-solving of distributed intelligent systems. The environment roles and responsibilities are transformed into and deployed as a problem-solving mechanism for distributed intelligent systems. A swarm-inspired search strategy is proposed as a behaviour-based cooperative search solution. It is applied to the cooperative search problem of Unmanned Aerial Vehicles (UAVs) with a series of experiments implemented for evaluation. The search environment represents the specification and requirements of the search problem; defines tasks to be achieved and maintained; and it is where targets are locally observable and accessible to UAVs. Therefore, the information provided through the search environment is used to define rules of behaviour for UAVs. The initial detection of target signal refers to modified configurations of the search environment, which mediates local communications among UAVs and is used as a means of coordination. The experimental results indicate that, the swarm-inspired search strategy is a valuable alternative solution to current approaches of cooperative search problem of UAVs. In the proposed search solution, the diagonal formation of two UAVs is able to produce superior performance than the triangular formation of three UAVs for the average detection time and the number of targets located within the maximum time length
    corecore