56 research outputs found

    Dynamic survivable multipath provisioning in OFDM-based flexible optical networks

    Get PDF
    Compared with traditional WDM network, OFDM-based flexible optical networks are able to provide better spectral efficiency due to its flexible allocation of requests on fine granularity subcarrirers. Survivability is a crucial issue in OFDM-based flexible optical networks. In [19], Ruan and Xiao propose a new survivable multipath provisioning scheme (MPP) that provides flexible protection levels in OFDM-based flexible optical networks. They also studies the static Survivable Multipath Routing and Spectrum Allocation (SM-RSA) problem which aims to accommodate a given set of demands with minimum utilized spectrum. It is shown that the MPP scheme achieves higher spectral efficiency than the traditional single-path provisioning (SPP) scheme. In this thesis, we study the dynamic SM-RSA problem, which allocates multiple routes and spectrum for a given demand as it arrives at the network. We develop an ILP model for the problem as well as a heuristic algorithm. We conduct simulations to study the advantage of MPP over SPP for dynamic traffic scenario in terms of blocking performance and fairness. We also compare the performance of the MPP heuristic algorithm and the ILP model

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Management of Spectral Resources in Elastic Optical Networks

    Get PDF
    Recent developments in the area of mobile technologies, data center networks, cloud computing and social networks have triggered the growth of a wide range of network applications. The data rate of these applications also vary from a few megabits per second (Mbps) to several Gigabits per second (Gbps), thereby increasing the burden on the Inter- net. To support this growth in Internet data traffic, one foremost solution is to utilize the advancements in optical networks. With technology such as wavelength division multiplexing (WDM) networks, bandwidth upto 100 Gbps can be exploited from the optical fiber in an energy efficient manner. However, WDM networks are not efficient when the traffic demands vary frequently. Elastic Optical Networks (EONs) or Spectrum Sliced Elastic Optical Path Networks (SLICE) or Flex-Grid has been recently proposed as a long-term solution to handle the ever-increasing data traffic and the diverse demand range. EONs provide abundant bandwidth by managing the spectrum resources as fine-granular orthogonal sub-carriers that makes it suitable to accommodate varying traffic demands. However, the Routing and Spectrum Allocation (RSA) algorithm in EONs has to follow additional constraints while allocating sub-carriers to demands. These constraints increase the complexity of RSA in EONs and also, make EONs prone to the fragmentation of spectral resources, thereby decreasing the spectral efficiency. The major objective of this dissertation is to study the problem of spectrum allocation in EONs under various network conditions. With this objective, this dissertation presents the author\u27s study and research on multiple aspects of spectrum allocation in EONs: how to allocate sub-carriers to the traffic demands, how to accommodate traffic demands that varies with time, how to minimize the fragmentation of spectral resources and how to efficiently integrate the predictability of user demands for spectrum assignment. Another important contribution of this dissertation is the application of EONs as one of the substrate technologies for network virtualization
    • …
    corecore