120 research outputs found

    Classification of Data to Extract Knowledge from Neural Networks

    Get PDF
    A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant

    Eclectic rule-extraction from support vector machines

    Get PDF
    Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule- extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule- extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity

    Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach

    Full text link
    Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede

    Learning-based Rule-Extraction from Support Vector Machines

    Get PDF
    In recent years, support vector machines (SVMs) have shown good performance in a number of application areas, including text classification. However, the success of SVMs comes at a cost - an inability to explain the process by which a learning result was reached and why a decision is being made. Rule-extraction from SVMs is important for the acceptance of this machine learning technology, especially for applications such as medical diagnosis. It is crucial for the users to understand how the system makes a decision. In this paper, a novel approach for rule-extraction from support vector machines is presented. This approach handles rule-extraction as a learning task, which proceeds in two steps. The first is to use the labeled patterns from a data set to train an SVM. The second step is to use the generated model to predict the label (class) for an extended data set or different, unlabeled data set. The resulting patterns are then used to train a decision tree learning system and to extract the corresponding rule sets. The output rule sets are verified against available knowledge for the domain problem (e.g. a medical expert), and other classification techniques, to assure correctness and validity of rules

    Hybrid rule-extraction from support vector machines

    Get PDF
    Rule-extraction from artificial neural networks(ANNs) as well as support vector machines (SVMs) provide explanations for the decisions made by these systems. This explanation capability is very important in applications such as medical diagnosis. Over the last decade, a multitude of algorithms for rule-extraction from ANNs have been developed. However, rule-extraction from SVMs is not widely available yet.In this paper, a hybrid approach for rule-extraction from SVMs is outlined. This approach has two basic components: (1) data reduction using a logistic regression model and (2) learning based rule-extraction. The quality of the extracted rules is then evaluated in terms of fidelity, accuracy, consistency and comprehensibility. The rules are also verified against the available knowledge from the domain problem (diabetes) to assure correctness and validity
    • …
    corecore