315 research outputs found

    Cultivate Quantitative Magnetic Resonance Imaging Methods to Measure Markers of Health and Translate to Large Scale Cohort Studies

    Get PDF
    Magnetic Resonance Imaging (MRI) is an indispensable tool in healthcare and research, with a growing demand for its services. The appeal of MRI stems from its non-ionizing radiation nature, ability to generate high-resolution images of internal organs and structures without invasive procedures, and capacity to provide quantitative assessments of tissue properties such as ectopic fat, body composition, and organ volume. All without long term side effects. Nine published papers are submitted which show the cultivation of quantitative measures of ectopic fat within the liver and pancreas using MRI, and the process of validating whole-body composition and organ volume measurements. All these techniques have been translated into large-scale studies to improve health measurements in large population cohorts. Translating this work into large-scale studies, including the use of artificial intelligence, is included. Additionally, an evaluation accompanies these published studies, appraising the evolution of these quantitative MRI techniques from the conception to their application in large cohort studies. Finally, this appraisal provides a summary of future work on crowdsourcing of ground truth training data to facilitate its use in wider applications of artificial intelligence.In conclusion, this body of work presents a portfolio of evidence to fulfil the requirements of a PhD by published works at the University of Salford

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Improving Dose-Response Correlations for Locally Advanced NSCLC Patients Treated with IMRT or PSPT

    Get PDF
    The standard of care for locally advanced non-small cell lung cancer (NSCLC) is concurrent chemo-radiotherapy. Despite recent advancements in radiation delivery methods, the median survival time of NSCLC patients remains below 28 months. Higher tumor dose has been found to increase survival but also a higher rate of radiation pneumonitis (RP) that affects breathing capability. In fear of such toxicity, less-aggressive treatment plans are often clinically preferred, leading to metastasis and recurrence. Therefore, accurate RP prediction is crucial to ensure tumor coverage to improve treatment outcome. Current models have associated RP with increased dose but with limited accuracy as they lack spatial correlation between accurate dose representation and quantitative RP representation. These models represent lung tissue damage with radiation dose distribution planned pre-treatment, which assumes a fixed patient geometry and inevitably renders imprecise dose delivery due to intra-fractional breathing motion and inter-fractional anatomy response. Additionally, current models employ whole-lung dose metrics as the contributing factor to RP as a qualitative, binary outcome but these global dose metrics discard microscopic, voxel-(3D pixel)-level information and prevent spatial correlations with quantitative RP representation. To tackle these limitations, we developed advanced deformable image registration (DIR) techniques that registered corresponding anatomical voxels between images for tracking and accumulating dose throughout treatment. DIR also enabled voxel-level dose-response correlation when CT image density change (IDC) was used to quantify RP. We hypothesized that more accurate estimates of biologically effective dose distributions actually delivered, achieved through (a) dose accumulation using deformable registration of weekly 4DCT images acquired over the course or radiotherapy and (b) the incorporation of variable relative biological effectiveness (RBE), would lead to statistically and clinically significant improvement in the correlation of RP with biologically effective dose distributions. Our work resulted in a robust intra-4DCT and inter-4DCT DIR workflow, with the accuracy meeting AAPM TG-132 recommendations for clinical implementation of DIR. The automated DIR workflow allowed us to develop a fully automated 4DCT-based dose accumulation pipeline in RayStation (RaySearch Laboratories, Stockholm, Sweden). With a sample of 67 IMRT patients, our results showed that the accumulated dose was statistically different than the planned dose across the entire cohort with an average MLD increase of ~1 Gy and clinically different for individual patients where 16% resulted in difference in the score of the normal tissue complication probability (NTCP) using an established, clinically used model, which could qualify the patients for treatment planning re-evaluation. Lastly, we associated dose difference with accuracy difference by establishing and comparing voxel-level dose-IDC correlations and concluded that the accumulated dose better described the localized damage, thereby a closer representation of the delivered dose. Using the same dose-response correlation strategy, we plotted the dose-IDC relationships for both photon patients (N = 51) and proton patients (N = 67), we measured the variable proton RBE values to be 3.07–1.27 from 9–52 Gy proton voxels. With the measured RBE values, we fitted an established variable proton RBE model with pseudo-R2 of 0.98. Therefore, our results led to statistically and clinically significant improvement in the correlation of RP with accumulated and biologically effective dose distributions and demonstrated the potential of incorporating the effect of anatomical change and biological damage in RP prediction models

    マーカーレス腫瘍位置決めを目的とした深層学習に基づく患者固有標的輪郭予測モデルの開発

    Get PDF
    京都大学新制・課程博士博士(人間健康科学)甲第24542号人健博第113号新制||人健||8(附属図書館)京都大学大学院医学研究科人間健康科学系専攻(主査)教授 中尾 恵, 教授 杉本 直三, 教授 黒田 知宏学位規則第4条第1項該当Doctor of Human Health SciencesKyoto UniversityDFA

    Translating computational modelling tools for clinical practice in congenital heart disease

    Get PDF
    Increasingly large numbers of medical centres worldwide are equipped with the means to acquire 3D images of patients by utilising magnetic resonance (MR) or computed tomography (CT) scanners. The interpretation of patient 3D image data has significant implications on clinical decision-making and treatment planning. In their raw form, MR and CT images have become critical in routine practice. However, in congenital heart disease (CHD), lesions are often anatomically and physiologically complex. In many cases, 3D imaging alone can fail to provide conclusive information for the clinical team. In the past 20-30 years, several image-derived modelling applications have shown major advancements. Tools such as computational fluid dynamics (CFD) and virtual reality (VR) have successfully demonstrated valuable uses in the management of CHD. However, due to current software limitations, these applications have remained largely isolated to research settings, and have yet to become part of clinical practice. The overall aim of this project was to explore new routes for making conventional computational modelling software more accessible for CHD clinics. The first objective was to create an automatic and fast pipeline for performing vascular CFD simulations. By leveraging machine learning, a solution was built using synthetically generated aortic anatomies, and was seen to be able to predict 3D aortic pressure and velocity flow fields with comparable accuracy to conventional CFD. The second objective was to design a virtual reality (VR) application tailored for supporting the surgical planning and teaching of CHD. The solution was a Unity-based application which included numerous specialised tools, such as mesh-editing features and online networking for group learning. Overall, the outcomes of this ongoing project showed strong indications that the integration of VR and CFD into clinical settings is possible, and has potential for extending 3D imaging and supporting the diagnosis, management and teaching of CHD
    corecore