1 research outputs found

    Analysis of the inspection of mechanical parts using dense range data

    Get PDF
    More than ever, efficiency and quality are key words in modern industry. This situation enhances the importance of quality control and creates a great demand for cheap and reliable automatic inspection systems. Taking into account these facts and the demand for systems able to inspect the final shape of machined parts, we decided to investigate the viability of automatic model-based inspection of mechanical parts using the dense range data produced by laser stripers. Given a part to be inspected and a corresponding model of the part stored in the model data base, the first step of inspecting the part is the acquisition of data corresponding to the part, in our case this means the acquisition of a range image of it. In order to be able to compare the part image and its stored model, it is necessary to align the model with the range image of the part. This process, called registration, corresponds to finding the rigid transformation that superposes model and image. After the image and model are registered, the actual inspection uses the range image to verify if all the features predicted in the model are present and have the right pose and dimensions. Therefore, besides the acquisition of range images, the inspection of machined parts involves three main issues: modelling, registration and inspection diagnosis. The application, for inspection purposes, of the main representational schemes for modelling solid objects is discussed and it is suggested the use of EDT models (see [Zeid 91]). A particular implementation of EDT models is presented. A novel approach for the verification of tolerances during the inspection is proposed. The approach allows not only the inspection of the most common tolerances described in the tolerancing standards, but also the inspection of tolerances defined according to Requicha's theory of tolerancing (see [Requicha 83]). A model of the sensitivity and reliability of the inspection process based on the modelling of the errors during the inspection process is also proposed. The importance of the accuracy of the registration in different inspections tasks is discussed. A modified version of the ICP algorithm (see [Besl &; McKay 92]) for the registration of sculptured surfaces is proposed. The maximum accuracy of the ICP algorithm, as a function of the sensor errors and the number of matched points, is determined. A novel method for the measurement and reconstruction of waviness errors on sculp¬ tured surfaces is proposed. The method makes use of the 2D Discrete Fourier Transform for the detection and reconstruction of the waviness error. A model of the sensitivity and reliability of the method is proposed. The application of the methods proposed is illustrated using synthetic and real range image
    corecore