116,593 research outputs found
Vapor phase surface functionalization under ultra violet activation of parylene thin films grown by chemical vapor deposition
Various reactive gas phase treatments have been investigated as surface functionalization dry processes with the goal to improve the wettability of parylene C films, keeping good optical properties in the visible range. The films were grown on different substrates by chemical vapor deposition with thicknesses ranging from 300 to 1630 nm. The polymer surface was treated under ultra violet (UV) irradiation at 254 nm in reactive atmospheres including He, H2O, H2O2, O2 and ambient air. The UV/O2 treatment is the most efficient since the water contact angle decreases from 100° to 6° while the transmittance is maintained at 90% in the visible wavelengths. Furthermore it exhibits long life stability. The functionalization mechanism is discussed in relation with previous reports
Development of covalent triazine frameworks as heterogeneous catalytic supports
Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks
Robust and Biocompatible Functionalization of ZnS Nanoparticles by Catechol-Bearing Poly(2-Methyl-2-Oxazoline)s.
Zinc sulfide (ZnS) nanoparticles (NPs) are particularly interesting materials for their electronic and luminescent properties. Unfortunately, their robust and stable functionalization and stabilization, especially in aqueous media, has represented a challenging and not yet completely accomplished task. In this work, we report the synthesis of colloidally stable, photoluminescent and biocompatible core\u2013polymer shell ZnS and ZnS:Tb NPs by employing a water-in-oil miniemulsion (ME) process combined with surface functionalization via catechol-bearing poly-2-methyl-2-oxazoline (PMOXA) of various molar masses. The strong binding of catechol anchors to the metal cations of the ZnS surface, coupled with the high stability of PMOXA against chemical degradation, enable the formation of suspensions presenting excellent colloidal stability. This feature, combined with the assessed photoluminescence and biocompatibility, make these hybrid NPs suitable for optical bioimaging
In-vivo magnetic resonance imaging of hyperpolarized silicon particles
Silicon-based micro and nanoparticles have gained popularity in a wide range
of biomedical applications due to their biocompatibility and biodegradability
in-vivo, as well as a flexible surface chemistry, which allows drug loading,
functionalization and targeting. Here we report direct in-vivo imaging of
hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical
properties of silicon provide surface electronic states for dynamic nuclear
polarization (DNP), extremely long depolarization times, insensitivity to the
in-vivo environment or particle tumbling, and surfaces favorable for
functionalization. Potential applications to gastrointestinal, intravascular,
and tumor perfusion imaging at sub-picomolar concentrations are presented.
These results demonstrate a new background-free imaging modality applicable to
a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include
Functionalization of two-dimensional tungsten diselenide and MXene for tunable optical property
Since the discover of graphene in 2004, two-dimensional (2D) materials have gained tremendous attention because of their distinctive properties relative to their bulk form. Particularly, transition metal dichalcogenides (TMDs) and 2D transition metal carbides and nitrides (MXenes) have shown promising applications in flexible electrical and optoelectronic devices. Due to the atomically thin nature, the electronic band structures of these materials are very sensitive to the small changes in the lattice and the surface functionalization, offering a dimension to tune the properties of the materials. In this thesis, approaches to functionalize monolayer WSe2 and MXene were explored. The as-grown chemical vapor deposition (CVD) monolayer WSe2 flakes were treated by plasma assisted doping method. Specifically, Methane plasma was used as carbon dopant source to introduce p-type lattice doping into monolayer WSe2. In addition, chemical reactions between perfluorophenylazides (PFPA) organic molecules and WSe2 flakes were conducted where the PFPA molecules may covalently bonded to the WSe2 surface. Similarly, the PFPA functionalization was applied to MXene, an emerging 2D material with high conductivity. Shifts and intensity change were observed in Raman spectra after the functionalization, indicating structural and electric structure changes might be introduced. Further characterizations of the structures and electric properties will be taken in the near future
Phosphine Functionalization of GaAs(111)A Surfaces
Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Ga surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity
Functionalization of carbon nanotubes with -CHn, -NHn fragments, -COOH and -OH groups
We present results of extensive theoretical studies concerning stability,
morphology, and band structure of single wall carbon nanotubes (CNTs)
covalently functionalized by -CHn(for n=2,3,4),-NHn(for n=1,2,3,4),-COOH and
-OH groups. Our studies are based on ab initio calculations in the framework of
the density functional theory. We determine the dependence of the binding
energies on the concentration of the adsorbed molecules, critical densities of
adsorbed molecules, global and local changes in the morphology, and electronic
structure paying particular attention to the functionalization induced changes
of the band gaps. These studies reveal physical mechanisms that determine
stability and electronic structure of those systems and also provide valuable
theoretical predictions relevant for application. Functionalization of CNTs
causes generally their elongation and locally sp2 -> sp3 rehybridization in the
neighborhood of chemisorbed groups. For adsorbants making particularly strong
covalent bonds with the CNTs(-CH2), we observe formation of the 5/7 defects. In
CNTs functionalized with -CH2,-NH4, and -OH, we determine critical density of
molecules that could be covalently bound to CNTs. Functionalization of CNTs can
be utilized for band gap engineering and also lead to changes in their
metallic/semiconductor character. In semiconducting CNTs, adsorbants such as
-CH3,-NH2,-OH and -COOH, introduce 'impurity' bands in the band gap of pristine
CNTs. In the case of -CH3,-NH2, the induced band gaps are typically smaller
than in the pure CNT and depend strongly on the concentration of adsorbants.
However, functionalization of semiconducting CNTs with -OH leads to the
metallization of CNTs. On the other hand, the functionalization of
semi-metallic (9,0)CNT with -CH2 causes the increase of the band gap and
induces semi-metal to semiconductor transition.Comment: accepted in Journal of Chemical Physic
Short-Chained Oligo(Ethylene Oxide)-Functionalized Gold Nanoparticles: Realization Of Significant Protein Resistance
Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein resistance of planar Au surfaces. We describe the application of these EO oligomers for improved protein resistance of 30 nm spherical gold nanoparticles (AuNPs). Functionalized AuNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. Capillary electrophoresis (CE) was used for separation and quantitation of AuNPs and AuNP-protein mixtures. Specifically, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was employed for the determination of equilibrium and rate constants for binding between citrate-stabilized AuNPs and two model proteins, lysozyme and fibrinogen. Semi-quantitative CE analysis was carried out for mixtures of EO-functionalized AuNPs and proteins, and results demonstrated a 2.5-fold to 10-fold increase in protein binding resistance to lysozyme depending on the AuNP surface functionalization and a 15-fold increase in protein binding resistance to fibrinogen for both EO oligomers examined in this study
- …
