24,610 research outputs found

    Mathematical Surface Matching of Maps of the Human Torso

    Get PDF
    This report concerns with the collection and processing of data acquired from three-dimensional (3D) surface scans of scoliosis patients' backs. Two main issues were addressed: the reproducibility of the results, and stringent time constraints. In particular, user influence should be removed from each step of the data processing, and results should be obtained within three minutes of acquiring the scan. The report begins with a description of the data collection, followed by a description of the data processing required to align two back surfaces. A section is devoted to calculating the cosmetic score, a measure of deformity of the back. The paper concludes with a few suggestions for improvements on data collection and use

    Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints

    Get PDF
    BACKGROUND Currently the clinical standard for measuring the motion of the bones in knee joints with sufficient precision involves implanting tantalum beads into the bones. These beads appear as high intensity features in radiographs and can be used for precise kinematic measurements. This procedure imposes a strong coupling between accuracy and invasiveness. In this paper, a tri-plane B-mode ultrasound (US) based non-invasive approach is proposed for use in kinematic analysis of knee joints in 3D space. METHODS The 3D analysis is performed using image processing procedures on the 2D US slices. The novelty of the proposed procedure and its applicability to the unconstrained 3D kinematic analysis of knee joints is outlined. An error analysis for establishing the method's feasibility is included for different artificial compositions of a knee joint phantom. Some in-vivo and in-vitro scans are presented to demonstrate that US scans reveal enough anatomical details, which further supports the experimental setup used using knee bone phantoms. RESULTS The error between the displacements measured by the registration of the US image slices and the true displacements of the respective slices measured using the precision mechanical stages on the experimental apparatus is evaluated for translation and rotation in two simulated environments. The mean and standard deviation of errors are shown in tabular form. This method provides an average measurement precision of less than 0.1 mm and 0.1 degrees, respectively. CONCLUSION In this paper, we have presented a novel non-invasive approach to measuring the motion of the bones in a knee using tri-plane B-mode ultrasound and image registration. In our study, the image registration method determines the position of bony landmarks relative to a B-mode ultrasound sensor array with sub-pixel accuracy. The advantages of our proposed system over previous techniques are that it is non-invasive, does not require the use of ionizing radiation and can be used conveniently if miniaturized.This work has been supported by School of Engineering & IT, UNSW Canberra, under Research Publication Fellowship

    A Survey of "The Sala degli Stucchi, an ornate baroque hall"

    Get PDF
    The "Sala degli stucchi" is a heavely decorated baroque hall, as the Italian name itself suggests, in the Royal Palace in Turin. The present work describes a survey of this historic object. This work is a part of a wider project on the study of Architectural Patrimony carried out for the La Soprintendenza per il Patrimonio storico, artistico ed etnoantropologico per il Piemonte. It is a chance to test the modern survey techniques of photogrammetry and LIDAR. This article focuses on the integrated use of digital photogrammetry and LIDAR in a demanding environment, in order to take best advantages of both techniques. Different survey products were obtained, ranging from 3D and photogrammetric models to orthophotos. The adopted techniques, the problems and difficulties that arose during the survey process are shown in the paper. The obtained and stored results were also used to make a complete 3D model of the whole hal

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    Real-time High Resolution Fusion of Depth Maps on GPU

    Full text link
    A system for live high quality surface reconstruction using a single moving depth camera on a commodity hardware is presented. High accuracy and real-time frame rate is achieved by utilizing graphics hardware computing capabilities via OpenCL and by using sparse data structure for volumetric surface representation. Depth sensor pose is estimated by combining serial texture registration algorithm with iterative closest points algorithm (ICP) aligning obtained depth map to the estimated scene model. Aligned surface is then fused into the scene. Kalman filter is used to improve fusion quality. Truncated signed distance function (TSDF) stored as block-based sparse buffer is used to represent surface. Use of sparse data structure greatly increases accuracy of scanned surfaces and maximum scanning area. Traditional GPU implementation of volumetric rendering and fusion algorithms were modified to exploit sparsity to achieve desired performance. Incorporation of texture registration for sensor pose estimation and Kalman filter for measurement integration improved accuracy and robustness of scanning process
    • …
    corecore