25,957 research outputs found

    Clustering-Based Predictive Process Monitoring

    Full text link
    Business process enactment is generally supported by information systems that record data about process executions, which can be extracted as event logs. Predictive process monitoring is concerned with exploiting such event logs to predict how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The predicate can be, for example, a temporal logic constraint or a time constraint, or any predicate that can be evaluated over a completed trace. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous traces are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data to discriminate between fulfillments and violations. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital

    Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization

    Full text link
    One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and Applications (ICMLA) 201
    • …
    corecore