5 research outputs found

    Evaluation of OpenMP for the Cyclops multithreaded architecture

    Get PDF
    Multithreaded architectures have the potential of tolerating large memory and functional unit latencies and increase resource utilization. The Blue Gene/Cyclops architecture, being developed at the IBM T. J. Watson Research Center, is one such systems that offers massive intra-chip parallelism. Although the BG/C architecture was initially designed to execute specific applications, we believe that it can be effectively used on a broad range of parallel numerical applications. Programming such applications for this unconventional design requires a significant porting effort when using the basic built-in mechanisms for thread management and synchronization. In this paper, we describe the implementation of an OpenMP environment for parallelizing applications, currently under development at the CEPBA-IBM Research Institute, targeting BG/C. The environment is evaluated with a set of simple numerical kernels and a subset of the NAS OpenMP benchmarks. We identify issues that were not initially considered in the design of the BG/C architecture to support a programming model such as OpenMP. We also evaluate features currently offered by the BG/C architecture that should be considered in the implementation of an efficient OpenMP layer for massive intra-chip parallel architectures.Peer ReviewedPostprint (author's final draft

    Threading model optimization of the AEMB Microprocessor

    Get PDF
    AEMB is a 32-bit RISC architecture processor with multi threading. It is a soft core processor designed for FPGA implementation and available as an open source. The processor runs on the instruction set of the Microblaze processor developed by Xilinx. The current threading model in AEMB is a fine grained model that interleaves threads one instruction at a time with separate register sets for each thread. This project aims at understanding the architecture of the AEMB and improving the performance of its threading model. The chosen optimization is to change the current threading model to a coarse grained one that switches threads on branch instructions. The advantage of this approach is that the pipeline no longer has to stall on every branch instruction executed as the processor will be executing instructions from another thread. Thus, branches cause the processor to stall only when there is back to back branch instructions or when two branch instructions with one gap between them and the first of them has no delay slot. This is quite an improvement over the previous case where the processor stalls for one cycle on any branch instruction encountered. The disadvantage to the coarse grained threading model is that data hazards that can’t be forwarded can now cause the processor to stall up to three cycles in the worst case scenario compared to only one cycle stall in the old model. As for Area consumption on FPGA, synthesis showed that the modified core utilizes double the number of LUTs that the original AEMB needs but there was no significant increase in the number of register. Further quantitative analysis is necessary to determine the total gain in performance by running the suitable benchmarks on both versions of the processor. The results are expected to be in favor of the design if the improved case is more common that the negatively affected cases

    Threading model optimization of the AEMB Microprocessor

    Get PDF
    AEMB is a 32-bit RISC architecture processor with multi threading. It is a soft core processor designed for FPGA implementation and available as an open source. The processor runs on the instruction set of the Microblaze processor developed by Xilinx. The current threading model in AEMB is a fine grained model that interleaves threads one instruction at a time with separate register sets for each thread. This project aims at understanding the architecture of the AEMB and improving the performance of its threading model. The chosen optimization is to change the current threading model to a coarse grained one that switches threads on branch instructions. The advantage of this approach is that the pipeline no longer has to stall on every branch instruction executed as the processor will be executing instructions from another thread. Thus, branches cause the processor to stall only when there is back to back branch instructions or when two branch instructions with one gap between them and the first of them has no delay slot. This is quite an improvement over the previous case where the processor stalls for one cycle on any branch instruction encountered. The disadvantage to the coarse grained threading model is that data hazards that can’t be forwarded can now cause the processor to stall up to three cycles in the worst case scenario compared to only one cycle stall in the old model. As for Area consumption on FPGA, synthesis showed that the modified core utilizes double the number of LUTs that the original AEMB needs but there was no significant increase in the number of register. Further quantitative analysis is necessary to determine the total gain in performance by running the suitable benchmarks on both versions of the processor. The results are expected to be in favor of the design if the improved case is more common that the negatively affected cases

    Supporting Fine-Grained Synchronization on a Simultaneous Multithreading Processor

    No full text
    Existing multiprocessor synchronization mechanisms are relatively heavyweight, due in part to the level of the memory hierarchy (typically main memory) at which threads must synchronize. Multithreaded processors, on the other hand, have the potential to significantly reduce synchronization cost, because threads share the processor simultaneously and can synchronize using processor-internal state. This paper proposes and evaluates new synchronization schemes for a simultaneous multithreaded processor. We present a scalable mechanism that permits threads to cheaply synchronize within the processor, with blocked threads consuming no processor resources. The basic mechanism, blocking acquire and release, is a hardware implementation of traditional software synchronization abstractions, implemented with a thread-shared hardware lock box. This study shows that a multithreading processor with efficient synchronization enables parallelization at a granularity an order of magnitude finer than..

    Structured Parallel Programming and Cache Coherence in Multicore Architectures

    Get PDF
    It is clear that multicore processors have become the building blocks of today’s high-performance computing platforms. The advent of massively parallel single-chip microprocessors further emphasizes the gap that exists between parallel architectures and parallel programming maturity. Our research group, starting from the experiences on distributed and shared memory multiprocessor, was one of the first to propose a Structured Parallel Programming approach to bridge this gap. In this scenario, one of the biggest problems is that an application’s performance is often affected by the sharing pattern of data and its impact on Cache Coherence. Currently multicore platforms rely on hardware or automatic cache coherence techniques that allow programmers to develop programs without taking into account the problem. It is well known that standard coherency protocols are inefficient for certain data communication patterns and these inefficiencies will be amplified by the increased core number and the complex memory hierarchies. Following a structured parallelism approach, our methodology to attack these problems is based on two interrelated issues: structured parallelism paradigms and cost models (or performance models). Evaluating the performance of a program, although widely studied, is still an open problem in the research community and, notably, specific cost models to de- scribe multicores are missing. For this reason in this thesis, we define an abstract model for cache coherent architectures, which is able to capture the essential elements and the qualitative behaviors of multicore-based systems. Furthermore, we show how this abstract model combined with well known performance modelling techniques, such as analytical modelling (e.g., queueing models and stochastic process algebras) or simulations, provide an application- and architecture-dependent cost model to predict structured parallel applications performances. Starting out from the behavior and performance predictability of structured parallelism schemes, in this thesis we address the issue of cache coherence in multicore architectures, following an algorithm-dependent approach, a particular kind of software cache coherence solution characterized by explicit cache management strategies, which are specific of the algorithm to be executed. Notably, we ensure parallel correctness by exploiting architecture-specific mechanisms and by defining proper data structures in order to “emulate” cache coherence solutions in an efficient way for each computation. Algorithm-dependent cache coherence can be efficiently implemented at the support level of structured parallelism paradigms, with absolute transparency with respect to the application programmer. Moreover, by using the cost model, in this thesis we study and compare different algorithm-dependent implementations, such as those based on automatic cache coherence with respect to an original, non-automatic and lock-free solution based on interprocessor communications. Notably, with this latter implementation, in some cases, we are able to reduce the number of memory accesses, cache transfers and synchronizations and increasing computation parallelism with respect to the use of automatic cache coherence. Current architectures do not usually allow disabling automatic cache coherence. However, the emergence of many-core architectures somewhat changed the scenario, so that some architectures, such as the Tilera TilePro64, allow to control and disable the automatic cache coherence facilities. For this reason, in this thesis we finally apply our methodology to TilePro64 platform in order provide a further validation of the results obtained by our cost model
    corecore