4 research outputs found

    Garbage collection in distributed systems

    Get PDF
    PhD ThesisThe provision of system-wide heap storage has a number of advantages. However, when the technique is applied to distributed systems automatically recovering inaccessible variables becomes a serious problem. This thesis presents a survey of such garbage collection techniques but finds that no existing algorithm is entirely suitable. A new, general purpose algorithm is developed and presented which allows individual systems to garbage collect largely independently. The effects of these garbage collections are combined, using recursively structured control mechanisms, to achieve garbage collection of the entire heap with the minimum of overheads. Experimental results show that new algorithm recovers most inaccessible variables more quickly than a straightforward garbage collection, giving an improved memory utilisation

    A VLSI architecture for enhancing software reliability

    Get PDF
    As a solution to the software crisis, we propose an architecture that supports and encourages the use of programming techniques and mechanisms for enhancing software reliability. The proposed architecture provides efficient mechanisms for detecting a wide variety of run-time errors, for supporting data abstraction, module-based programming and encourages the use of small protection domains through a highly efficient capability mechanism. The proposed architecture also provides efficient support for user-specified exception handlers and both event-driven and trace-driven debugging mechanisms. The shortcomings of the existing capability-based architectures that were designed with a similar goal in mind are examined critically to identify their problems with regard to capability translation, domain switching, storage management, data abstraction and interprocess communication. Assuming realistic VLSI implementation constraints, an instruction set for the proposed architecture is designed. Performance estimates of the proposed system are then made from the microprograms corresponding to these instructions based on observed characteristics of similar systems and language usage. A comparison of the proposed architecture with similar ones, both in terms of functional characteristics and low-level performance indicates the proposed design to be superior
    corecore