924 research outputs found

    Towards a Mathematical Theory of Super-Resolution

    Full text link
    This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object---the high end of its spectrum---from coarse scale information only---from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1][0,1] and with unknown complex-valued amplitudes. We only observe Fourier samples of this object up until a frequency cut-off fcf_c. We show that one can super-resolve these point sources with infinite precision---i.e. recover the exact locations and amplitudes---by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc2/f_c. This result extends to higher dimensions and other models. In one dimension for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super-resolved signal is expected to degrade when both the noise level and the {\em super-resolution factor} vary.Comment: 48 pages, 12 figure

    Sparse Spikes Deconvolution on Thin Grids

    Full text link
    This article analyzes the recovery performance of two popular finite dimensional approximations of the sparse spikes deconvolution problem over Radon measures. We examine in a unified framework both the L1 regularization (often referred to as Lasso or Basis-Pursuit) and the Continuous Basis-Pursuit (C-BP) methods. The Lasso is the de-facto standard for the sparse regularization of inverse problems in imaging. It performs a nearest neighbor interpolation of the spikes locations on the sampling grid. The C-BP method, introduced by Ekanadham, Tranchina and Simoncelli, uses a linear interpolation of the locations to perform a better approximation of the infinite-dimensional optimization problem, for positive measures. We show that, in the small noise regime, both methods estimate twice the number of spikes as the number of original spikes. Indeed, we show that they both detect two neighboring spikes around the locations of an original spikes. These results for deconvolution problems are based on an abstract analysis of the so-called extended support of the solutions of L1-type problems (including as special cases the Lasso and C-BP for deconvolution), which are of an independent interest. They precisely characterize the support of the solutions when the noise is small and the regularization parameter is selected accordingly. We illustrate these findings to analyze for the first time the support instability of compressed sensing recovery when the number of measurements is below the critical limit (well documented in the literature) where the support is provably stable
    • …
    corecore