1,238 research outputs found

    Uncertainty and Fuzzy Decisions in Earthquake Risk Evaluation of Buildings

    Get PDF
    The Northern region of Thailand has been considered as one of the seismic risk zones. However, most existing buildings in the area had been designed and constructed based on old building design codes without seismic consideration. Therefore, those buildings are required to upgrade based on earthquake building damage risk evaluation. With resource limitations, it is not feasible to retrofit all buildings in a short period. In addition, the results of the risk evaluation contain uncertain inputs and outputs. The objective of this study is to prioritize building retrofit based on fuzzy earthquake risk assessment. The risk assessment of a building was made considering the risk factors including (1) building vulnerability, (2) seismic intensity and (3) building values. Then, the total risk was calculated by integrating all the risk factors with their uncertainties using a fuzzy rule based model. An example of the retrofit prioritization is shown here considering the three fuzzy factors. The ranking is hospital, temple, school, government building, factory and house, respectively. The result helps decision makers to screen and prioritize the building retrofitting in the seismically prone area

    Pre-earthquake fuzzy logic-based rapid hazard assessment of reinforced concrete buildings

    Get PDF
    The main purpose of this paper is to present a rapid building assessment fuzzy logic (FL) modelling for risk assessment based on expert construction engineering verbal informatics. Before an earthquake, a set of input expert assessment variables are transformed into five types of hazard categorization as "no damage", "slight damage", "moderate damage", "severe damage", and "collapse". Main variables are reported by expert engineers based on visual inspection of structural components in addition to the building location's peak ground velocity (PGV) micro zonation numerical value, soil type and building's material information. Each input variable and output hazard class is fuzzified. A valid set of fuzzy rule base components is written based on input variables, each of which has an appropriate output hazard class. The fuzzy hazard assessment model has input and output variables in terms of fuzzy sets. Thus, the overall model output is in the form of a fuzzy set and then defuzzified to find the percentage of each hazard class for a single building. The application of this fuzzy logic model is presented for twenty existing reinforced concrete buildings, and the final hazard categories of these buildings are presented with interpretations and recommendations.Istanbul Medipol Universit

    Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran

    Get PDF
    Earthquakes are natural phenomena, which induce natural hazard that seriously threatens urban areas, despite significant advances in retrofitting urban buildings and enhancing the knowledge and ability of experts in natural disaster control. Iran is one of the most seismically active countries in the world. The purpose of this study was to evaluate and analyze the extent of earthquake vulnerability in relation to demographic, environmental, and physical criteria. An earthquake risk assessment (ERA) map was created by using a Fuzzy-Analytic Hierarchy Process coupled with an Artificial Neural Networks (FAHP-ANN) model generating five vulnerability classes. Combining the application of a FAHP-ANN with a geographic information system (GIS) enabled to assign weights to the layers of the earthquake vulnerability criteria. The model was applied to Sanandaj City in Iran, located in the seismically active Sanandaj-Sirjan zone which is frequently affected by devastating earthquakes. The Multilayer Perceptron (MLP) model was implemented in the IDRISI software and 250 points were validated for grades 0 and 1. The validation process revealed that the proposed model can produce an earthquake probability map with an accuracy of 95%. A comparison of the results attained by using a FAHP, AHP and MLP model shows that the hybrid FAHP-ANN model proved flexible and reliable when generating the ERA map. The FAHP-ANN model accurately identified the highest earthquake vulnerability in densely populated areas with dilapidated building infrastructure. The findings of this study are useful for decision makers with a scientific basis to develop earthquake risk management strategies

    Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings

    Get PDF
    The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 DĂŒzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning

    Fuzzy Inference System (FIS) model for the seismic parameters of code-based earthquake response spectra

    Get PDF
    The response spectra defined in seismic design codes include crisp classifications of seismic parameters, which directly affect the spectra’s shape and greatly alter seismic design loads. The optimum design phase seismic forces have an important role in the efficiency of the construction costs and structural safety. Various parameters are used to calculate the seismic design forces, especially presented in the codes with earthquake design spectra. This study presents a rule-based fuzzy inference model with fuzzy sets to determine these parameters using fuzzy inference system (FIS) modelling, which is the most appropriate approach among the different alternatives because both the input and output variables have numerical and linguistic uncertainties in the earthquake problem. Using the seismic zone factor of the region and shear wave velocity of the soil profile as inputs, the model generates the seismic coefficients and peak ground acceleration values of the response spectra specified in the Uniform Building Code (UBC, 1997). The response spectra in this code can be easily generated with these seismic coefficients after their fuzzification. Response spectra of twenty-five different sample cases with and without the FIS model are generated, which provide comparisons for the model superiority assessment. Significant differences are observed between the crisp logic and the FIS model-generated spectra. It is suggested that the FIS model can be modified and applied to various parameters to generate response spectra in different seismic design codes.Istanbul Medipol Universit

    Recent advances in intelligent-based structural health monitoring of civil structures

    Get PDF
    This survey paper deals with the structural health monitoring systems on the basis of methodologies involving intelligent techniques. The intelligent techniques are the most popular tools for damage identification in terms of high accuracy, reliable nature and the involvement of low cost. In this critical survey, a thorough analysis of various intelligent techniques is carried out considering the cases involved in civil structures. The importance and utilization of various intelligent tools to be mention as the concept of fuzzy logic, the technique of genetic algorithm, the methodology of neural network techniques, as well as the approaches of hybrid methods for the monitoring of the structural health of civil structures are illustrated in a sequential manner

    Fuzzy Sets Applications in Civil Engineering Basic Areas

    Get PDF
    Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings. This paper presents some Fuzzy Logic (FL) applications in civil engeering discipline and shows the potential of facilities of FL in this area. The potential role of fuzzy sets in analysing system and human uncertainty is investigated in the paper. The main finding of this inquiry is FL applications used in different areas of civil engeering discipline with success. Once developed, the fuzzy logic models can be used for further monitoring activities, as a management tool

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Semi-Supervised Learning Method for the Augmentation of an Incomplete Image-Based Inventory of Earthquake-Induced Soil Liquefaction Surface Effects

    Get PDF
    Soil liquefaction often occurs as a secondary hazard during earthquakes and can lead to significant structural and infrastructure damage. Liquefaction is most often documented through field reconnaissance and recorded as point locations. Complete liquefaction inventories across the impacted area are rare but valuable for developing empirical liquefaction prediction models. Remote sensing analysis can be used to rapidly produce the full spatial extent of liquefaction ejecta after an event to inform and supplement field investigations. Visually labeling liquefaction ejecta from remotely sensed imagery is time-consuming and prone to human error and inconsistency. This study uses a partially labeled liquefaction inventory created from visual annotations by experts and proposes a pixel-based approach to detecting unlabeled liquefaction using advanced machine learning and image processing techniques, and to generating an augmented inventory of liquefaction ejecta with high spatial completeness. The proposed methodology is applied to aerial imagery taken from the 2011 Christchurch earthquake and considers the available partial liquefaction labels as high-certainty liquefaction features. This study consists of two specific comparative analyses. (1) To tackle the limited availability of labeled data and their spatial incompleteness, a semi-supervised self-training classification via Linear Discriminant Analysis is presented, and the performance of the semi-supervised learning approach is compared with supervised learning classification. (2) A post-event aerial image with RGB (red-green-blue) channels is used to extract color transformation bands, statistical indices, texture components, and dimensionality reduction outputs, and performances of the classification model with different combinations of selected features from these four groups are compared. Building footprints are also used as the only non-imagery geospatial information to improve classification accuracy by masking out building roofs from the classification process. To prepare the multi-class labeled data, regions of interest (ROIs) were drawn to collect samples of seven land cover and land use classes. The labeled samples of liquefaction were also clustered into two groups (dark and light) using the Fuzzy C-Means clustering algorithm to split the liquefaction pixels into two classes. A comparison of the generated maps with fully and manually labeled liquefaction data showed that the proposed semi-supervised method performs best when selected high-ranked features of the two groups of statistical indices (gradient weight and sum of the band squares) and dimensionality reduction outputs (first and second principal components) are used. It also outperforms supervised learning and can better augment the liquefaction labels across the image in terms of spatial completeness
    • 

    corecore