90 research outputs found

    Supersparse Linear Integer Models for Optimized Medical Scoring Systems

    Full text link
    Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by solving an integer program that directly encodes measures of accuracy (the 0-1 loss) and sparsity (the â„“0\ell_0-seminorm) while restricting coefficients to coprime integers. SLIM can seamlessly incorporate a wide range of operational constraints related to accuracy and sparsity, and can produce highly tailored models without parameter tuning. We provide bounds on the testing and training accuracy of SLIM scoring systems, and present a new data reduction technique that can improve scalability by eliminating a portion of the training data beforehand. Our paper includes results from a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM was used to create a highly tailored scoring system for sleep apnea screeningComment: This version reflects our findings on SLIM as of January 2016 (arXiv:1306.5860 and arXiv:1405.4047 are out-of-date). The final published version of this articled is available at http://www.springerlink.co

    Learning Optimal Fair Scoring Systems for Multi-Class Classification

    Full text link
    Machine Learning models are increasingly used for decision making, in particular in high-stakes applications such as credit scoring, medicine or recidivism prediction. However, there are growing concerns about these models with respect to their lack of interpretability and the undesirable biases they can generate or reproduce. While the concepts of interpretability and fairness have been extensively studied by the scientific community in recent years, few works have tackled the general multi-class classification problem under fairness constraints, and none of them proposes to generate fair and interpretable models for multi-class classification. In this paper, we use Mixed-Integer Linear Programming (MILP) techniques to produce inherently interpretable scoring systems under sparsity and fairness constraints, for the general multi-class classification setup. Our work generalizes the SLIM (Supersparse Linear Integer Models) framework that was proposed by Rudin and Ustun to learn optimal scoring systems for binary classification. The use of MILP techniques allows for an easy integration of diverse operational constraints (such as, but not restricted to, fairness or sparsity), but also for the building of certifiably optimal models (or sub-optimal models with bounded optimality gap)

    Interpretability and Explainability: A Machine Learning Zoo Mini-tour

    Full text link
    In this review, we examine the problem of designing interpretable and explainable machine learning models. Interpretability and explainability lie at the core of many machine learning and statistical applications in medicine, economics, law, and natural sciences. Although interpretability and explainability have escaped a clear universal definition, many techniques motivated by these properties have been developed over the recent 30 years with the focus currently shifting towards deep learning methods. In this review, we emphasise the divide between interpretability and explainability and illustrate these two different research directions with concrete examples of the state-of-the-art. The review is intended for a general machine learning audience with interest in exploring the problems of interpretation and explanation beyond logistic regression or random forest variable importance. This work is not an exhaustive literature survey, but rather a primer focusing selectively on certain lines of research which the authors found interesting or informative
    • …
    corecore