2 research outputs found

    Bayesian Fusion of Multi-Band Images -Complementary results and supporting materials

    Get PDF
    Abstract In this paper, a Bayesian fusion technique for remotely sensed multi-band images is presented. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution exploiting geometrical consideration is introduced. To compute the Bayesian estimator of the scene of interest from its posterior distribution, a Markov chain Monte Carlo algorithm is designed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte Carlo step is introduced in the Gibbs sampling strategy. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques. In particular, low spatial resolution hyperspectral and multispectral images are fused to produce a high spatial resolution hyperspectral image. Index Terms Part of this work has been supported by the Hypanema ANR Project

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link
    corecore