1,047 research outputs found

    Performance of cognitive stop-and-wait hybrid automatic repeat request in the face of imperfect sensing

    No full text
    The cognitive radio (CR) paradigm has the potential of improving the exploitation of the electromagnetic spectrum by detecting instantaneously unoccupied spectrum slots allocated to primary users (PUs). In order to support the process of spectrum reuse, we consider a CR scheme, which senses and opportunistically accesses a PU's spectrum for communication between a pair of nodes relying on the stop-and-wait hybrid automatic repeat request (SW-HARQ) protocol. This arrangement is represented by the cognitive SW-HARQ (CSW-HARQ), where the availability/unavailability of the PU's channel is modeled as a two-state Markov chain having OFF and ON states, respectively. Once the cognitive user (CU) finds that the PU's channel is available (i.e., in the OFF state), the CU transmits data over the PU channel's spectrum, while relying on the principles of SW-HARQ. We investigate both the throughput and the delay of CSW-HARQ, with a special emphasis on the impact of the various system parameters involved in the scenarios of both perfect and imperfect spectrum sensing. Furthermore, we analyze both the throughput as well as the average packet delay and end-to-end packet delay of the CSW-HARQ system. We propose a pair of analytical approaches: 1) the probability-based and 2) the discrete time Markov chain-based. Closed-form expressions are derived for both the throughput and the delay under the perfect and imperfect sensing environments that are validated by simulation. We demonstrate that the activity of PUs, the transmission reliability of the CU, and the sensing environment have a significant impact on both the throughput and the delay of the CR system

    Cooperative Downlink Multicell Preprocessing Relying on Reduced-Rate Back-Haul Data Exchange

    No full text
    Different-complexity multicell preprocessing (MCP) schemes employing distributed signal-to-interference leakageplus-noise ratio (SILNR) precoding techniques are proposed, which require reduced back-haul data exchange in comparison with the conventional MCP structure. Our results demonstrate that the proposed structures are capable of increasing the throughput achievable in the cell-edge area while offering different geographic rate profile distributions, as well as meeting different delay requirements
    corecore