341 research outputs found

    A Bregman forward-backward linesearch algorithm for nonconvex composite optimization: superlinear convergence to nonisolated local minima

    Full text link
    We introduce Bella, a locally superlinearly convergent Bregman forward backward splitting method for minimizing the sum of two nonconvex functions, one of which satisfying a relative smoothness condition and the other one possibly nonsmooth. A key tool of our methodology is the Bregman forward-backward envelope (BFBE), an exact and continuous penalty function with favorable first- and second-order properties, and enjoying a nonlinear error bound when the objective function satisfies a Lojasiewicz-type property. The proposed algorithm is of linesearch type over the BFBE along candidate update directions, and converges subsequentially to stationary points, globally under a KL condition, and owing to the given nonlinear error bound can attain superlinear convergence rates even when the limit point is a nonisolated minimum, provided the directions are suitably selected

    A Simple and Efficient Algorithm for Nonlinear Model Predictive Control

    Full text link
    We present PANOC, a new algorithm for solving optimal control problems arising in nonlinear model predictive control (NMPC). A usual approach to this type of problems is sequential quadratic programming (SQP), which requires the solution of a quadratic program at every iteration and, consequently, inner iterative procedures. As a result, when the problem is ill-conditioned or the prediction horizon is large, each outer iteration becomes computationally very expensive. We propose a line-search algorithm that combines forward-backward iterations (FB) and Newton-type steps over the recently introduced forward-backward envelope (FBE), a continuous, real-valued, exact merit function for the original problem. The curvature information of Newton-type methods enables asymptotic superlinear rates under mild assumptions at the limit point, and the proposed algorithm is based on very simple operations: access to first-order information of the cost and dynamics and low-cost direct linear algebra. No inner iterative procedure nor Hessian evaluation is required, making our approach computationally simpler than SQP methods. The low-memory requirements and simple implementation make our method particularly suited for embedded NMPC applications

    On the Local and Global Convergence of a Reduced Quasi-Newton Method

    Get PDF
    In optimization in R^n with m nonlinear equality constraints, we study the local convergence of reduced quasi-Newton methods, in which the updated matrix is of order n-m. In particular, we give necessary and sufficient conditions for q-superlinear convergence (in one step). We introduce a device to globalize the local algorithm which consists in determining a step on an arc in order to decrease an exact penalty function. We give conditions so that asymptotically the step will be equal to one

    The Lack of Positive Definiteness in the Hessian in Constrained Optimization

    Get PDF
    The use of the DFP or the BFGS secant updates requires the Hessian at the solution to be positive definite. The second order sufficiency conditions insure the positive definiteness only in a subspace of R^n. Conditions are given so we can safely update with either update. A new class of algorithms is proposed which generate a sequence {xk} converging 2-step q-superlinearly. We also propose two specific algorithms: One converges q-superlinearly if the Hessian is positive definite in R^n and converges 2-step q-superlinearly if the Hessian is positive definite only in a subspace; the second one generates a sequence converging 1-step q-superlinearly. While the former costs one extra gradient evaluation, the latter costs one extra gradient evaluation and one extra function evaluation on the constraints

    Newton-type Alternating Minimization Algorithm for Convex Optimization

    Full text link
    We propose NAMA (Newton-type Alternating Minimization Algorithm) for solving structured nonsmooth convex optimization problems where the sum of two functions is to be minimized, one being strongly convex and the other composed with a linear mapping. The proposed algorithm is a line-search method over a continuous, real-valued, exact penalty function for the corresponding dual problem, which is computed by evaluating the augmented Lagrangian at the primal points obtained by alternating minimizations. As a consequence, NAMA relies on exactly the same computations as the classical alternating minimization algorithm (AMA), also known as the dual proximal gradient method. Under standard assumptions the proposed algorithm possesses strong convergence properties, while under mild additional assumptions the asymptotic convergence is superlinear, provided that the search directions are chosen according to quasi-Newton formulas. Due to its simplicity, the proposed method is well suited for embedded applications and large-scale problems. Experiments show that using limited-memory directions in NAMA greatly improves the convergence speed over AMA and its accelerated variant

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension
    • …
    corecore