357 research outputs found

    Superiority of one-way and realtime quantum machines and new directions

    Full text link
    In automata theory, the quantum computation has been widely examined for finite state machines, known as quantum finite automata (QFAs), and less attention has been given to the QFAs augmented with counters or stacks. Moreover, to our knowledge, there is no result related to QFAs having more than one input head. In this paper, we focus on such generalizations of QFAs whose input head(s) operate(s) in one-way or realtime mode and present many superiority of them to their classical counterparts. Furthermore, we propose some open problems and conjectures in order to investigate the power of quantumness better. We also give some new results on classical computation.Comment: A revised edition with some correction

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    Exact affine counter automata

    Get PDF
    © F. Blanchet-Sadri & S. Osborne. We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affine, quantum or classical finite state models in polynomial time, can be recognized by affine counter automata with one-sided bounded-error in realtime

    Micro-Futures

    Get PDF
    One of humankinds oldest quests has been to find the ‘elixir of life’, a mythical potion that, would grant the drinker immortality (and preferably, eternal youth!). One of the most famous tales of a search for this fabled tonic was that of the first emperor of a unified China, Qin Shi Huang (246 BC. to 210 BC), who, in the latter part of his life, is said to have become preoccupied with finding this illusive concoction. This article is presented at a workshop that is taking place in the heartland of what was Qin Shi Huang's empire (China), and touches on a modern day search for an elixir of life, this time a high-tech approach based on computers and artificial intelligence technology, that goes by the name of ‘The Technological Singularity’. However, as fascinating as a search for an elixir of life may be, the real motivation of this paper is to introduce micro-fiction as a methodology for capturing and communicating visions for scientific, business and societal innovations. To those end, The Technological Singularity is described and used as a means to illustrate the workings of micro SciFi-Prototyping (micro-SFPs)
    corecore